
Hoarescope

Markus Triska (0225855)1

July 17, 2005

Abstract

This paper presents Hoarescope, a program that helps to prove partial
correctness assertions of AL(N)-programs using Hoare calculus. This
paper also presents Presprover, a program for proving satisfiability and
validity of formulas of Presburger arithmetic.

1 Introduction

It is assumed that the reader is familiar with Hoare calculus. A thorough
overview is provided in [Apt 1981] and the references included therein. Since
Hoarescope is primarily intended as a teaching aid for students who take the
“Theoretische Informatik 1” course at the Vienna University of Technology, we
briefly outline the inference rules as stated in the course material, because they
are referred to in the output of Hoarescope. Though we don’t formally define
neither syntax nor semantics of AL(N) (Assignment Language over natural
numbers) in this paper, both can be intuitively grasped to a large extent from
the provided examples. The main rules named (H1) to (H4) are:

(P ⊃ Q[t
v
])

P {v ← t} Q
(H1)

(variables of v ← t must not be quantified in P or Q)

P {α} Q Q {β} R

P {begin α;β end} R
(H2)

(P ∧B) {α} Q (P ∧ ¬B) {β} Q

P {if B then α else β} Q
(H3)

(P ⊃ INV) (INV ∧B) {α} INV ((INV ∧ ¬B) ⊂ Q)
P {while B do α} Q

(H4)

Additionally, we introduce auxiliary rules (T1) to (T3) that formalize the
choice of a suitable interpolant Q when applying (H2) in certain cases:

1This project was done as “Wahlfachpraktikum”, adviser G. Salzer.

1

Hoarescope, July 17, 2005

(P ∧ v = t) {β} R

P {begin v ← t; β end} R
(T1)

(v must not occur in P or t)

P {α} R[t
v
]

P {begin α;v ← t end};R
(T2)

P {α} INV (INV ∧B) {β} INV ((INV ∧ ¬B) ⊃ R)
P {begin α; while B do β end} R

(T3)

2 Inference Engine

We present the inference engine of Hoarescope in tandem with an example
derivation tree that is generated from the partial correctness assertion

y > 1 {begin x← 3; if x + y < 19 then x← x + 19 else x← y + y end} x > y.

This Hoare triple can be specified using Hoarescope’s syntax as follows:
y > 1 { begin x := 3; if x + y < 19 then x := x + 19 else ←↩

x := y + y end } x > y

Many other examples are provided in the Hoarescope distribution to give a
quick overview over syntactic possibilities. In particular, aliases for terms can
be specified that help to keep the generated derivation tree concise:

y > 1 { begin x := 3; if x + y < 19 then x := x + 19 else ←↩
x := y + y end } x > y WHERE y > 1 IS P, ←↩
x > y IS Q, x+y<19 IS B

From this input, Hoarescope generates LATEX output that, if rendered, looks
like this:

(1)
(((P ∧ (x = 3)) ∧B) ⊃ (Q[(x + 19)

x
]))

((P ∧ (x = 3)) ∧B) {x← (x + 19)} Q
(H1)

(2)
(((P ∧ (x = 3)) ∧ ¬B) ⊃ (Q[(y + y)

x
]))

((P ∧ (x = 3)) ∧ ¬B) {x← (y + y)} Q
(H1)

(P ∧ (x = 3)) {if B then x← (x + 19) else x← (y + y)} Q
(H3)

P {begin x← 3; if B then x← (x + 19) else x← (y + y) end} Q
(T1)

In addition to this derivation tree, Hoarescope emits status messages (that we
omit here) from which the derivation process can be observed in a form suitable
for further automatic processing, if required. These messages also hint at the
formulas that are to be proved in order to complete the derivation (in this case,
the formulas labelled (1) and (2) at the top of the tree). The next chapter
introduces a means to do this automatically for a large class of formulas.

Hoarescope contains a few built-in heuristics to automatically deduce loop
invariants for certain kinds of loops. In case no suitable invariant can be found,
a status message is printed and the derivation continues with a symbolic name
for the invariant.

2

Hoarescope, July 17, 2005

3 Proving Formulas of Presburger Arithmetic

The first-order theory of natural numbers with addition, whose language con-
sists of the non-logical constant symbols 0 and 1, the binary relation symbols =
and ≤, and the binary function symbol +, is commonly called Presburger arith-
metic, named after Mojzesz Presburger. In contrast to general arithmetic, Pres-
burger arithmetic is both consistent and complete, and also decidable. In the
following, we present Presprover, a program that can (dis)prove satisfiability
and validity of Presburger formulas. Though Presprover evolved in conjunction
with Hoarescope to automatically complete certain kinds of derivation trees,
both programs can be used independently, and in fact, there exists no hard-
wired connection between them.

To decide a Presburger formula’s satisfiability and validity, Presprover im-
plements a simple and effective method described in [Com2001]. The idea is to
associate with each Presburger formula ϕ a finite automaton Aϕ that is built
so that deciding the satisfiability of ϕ reduces to deciding the emptiness of Aϕ,
and deciding validity of ϕ comes down to deciding satisfiability of (in essence)
the complement automaton.

There are 2 subtleties involved in building the complement automaton, and
we explain them here in detail because they are not mentioned in the cited
paper. Consider the automaton associated with the formula (∃x)x + y > 3, of
which a deterministic version is depicted in figure 1.

q−4

q−2.1

q−2

q−1.0

q−1

q0

q0.1

0 0

0, 1

1

1

1
1 0 0

0, 1
1

0

Figure 1: Deterministic automaton corresponding to (∃x)x + y > 3

To build the complement of this deterministic and complete automaton, one
would ordinarily turn states q−4, q−2, q−1 and q−2.1 into accepting states and
revoke accepting status from states q−1.0, q0 and q0.1. In our case, however, the
matter is not so easily settled. We assume that the reader is familiar with the
way numbers are represented in the generated automata. From the automaton
in figure 1, we see that the sequence “000” leads to an accepting state. As this
sequence is one way of representing the number zero, the constant 0 is thus
accepted by this automaton (corresponding to the fact that there exists an x
such that x + 0 > 3). Therefore, the complement automaton must not accept
any representation of 0, and in particular, it must not accept the sequence “00”,
and therefore q−1 can not be turned into an accepting state. For the same
reason, the state q−2 can not become a halting state. Moreover, q−2.1 can
not turn accepting either, as this would imply that both the automaton and
its complement accept the constant 1. More generally, an ordinary state from

3

Hoarescope, July 17, 2005

which a final state can be reached through a path consisting only of zeros is not
turned into an accepting state when complementing.

The second subtlety has to do with the initial state: If the initial state is an
ordinary state, it can – when complementing – only be turned into an accepting
state if it is reachable through an actual path (from itself), unless the problem
is already reduced to a reachability instance, in which case its accepting status
is simply toggled. This is because the empty word does not correspond to a
number in the representation used.

The reader will notice that the formulas labelled (1) and (2) at the top
of the derivation tree above can be easily rewritten into formulas of Presburger
arithmetic using algebraic identities like y > 1 ≡ 2 ≤ y, and that we should thus
be able to use Presprover on them. In fact, Presprover already contains a simple
term rewriting engine and we can type in the formulas virtually verbatim. Here
are two example queries that also serve as a quick introduction to the syntax
used by Presprover :

?- valid(y > 1 /\ x = 3 /\ x + y < 19 => x + 19 > y).

Yes

?- valid(y > 1 /\ x = 3 /\ not(x + y < 19) => y + y > y).

Yes

Free variables are implicitly all-quantified, and we can make this explicit as in:

?- valid(forall(y, exists(x, x + y > 3))).

Yes

4 Technicalities

Hoarescope is written in C/C++ and was successfully tested using GCC 3.4.4.
The package should build on a variety of systems. Presprover was successfully
tested with SWI-Prolog 5.5.19 and should also work with any later version.
Presprover makes use of the finite domain constraint solver that ships with
SWI-Prolog.

5 References

[Apt1981] K. R. Apt, Ten Years of Hoare’s Logic: A Survey, Part 1, ACM
Transactions on Programming Languages and Systems (TOPLAS), Vol-
ume 3 Issue 4, October 1981

[Com2001] H. Comon and C. Kirchner, Constraint Solving on Terms, in Con-
straints in Computational Logics, Lecture Notes in Computer Science,
Springer 2001

4

