
Assignment

Summary

1. Introduction

2. Ordinary Assignment: a_x and (a)_x

3. Strand Assignment: (a;b)_(x;y)

4. Value and Value in Context Assignment

4a. Value: %‘var

4b. Value in Context: ‘ctx%‘var

4c. Value and Value in Context Assignment: (%‘var)_x and (‘ctx%‘var)_x

5. Bracket Index Selective Assignment: a[i;j;
;k]_x

5a. Repeated Indices

5b. Replace All: a[]_b

5c. Append: a[,]_b

6. Choose-Pick Selective Assignment: (i#p�a)_x

7. Primitive Functions in Selective Assignment Expressions

1. Introduction

The purpose of this tutorial is to familiarize the reader with the A+
primitive function called assignment, or specification. This primitive
is the one to use for initializing and modifying the values of
variables. Ordinary assignment is of the form a_b, where the term
ordinary refers to the simple form of the construct to the left of the
arrow. Selective assignment allows for more complicated constructs on
the left, whereby subarrays of the values of variables are replaced.

It is possible to create functions with ordinary assignment when there
is a function expression to the right of the assignment arrow.
Function assignment is not a topic for this tutorial, however; see the

1

A+ Reference Manual. In addition, ordinary assignment has a special
side effect when used in the left argument of a dyadic do statement.

This tutorial is made up of textual descriptions and A+ examples. You
should set up your emacs environment to have two visible buffers, one
holding the tutorial and the other an A+ session. If you are currently
reading this in emacs, simply press F4.

To bring individual expressions from the tutorial into the A+ session,
place the cursor on the expression and press F2; for function
definitions place the cursor anywhere in the definition and press F3.
It is assumed that the expressions and functions are brought into the
A+ session when you first encounter them, unless there are explicit
directions to the contrary.

If you need more help on running emacs and A+, see the Getting Started
tutorial.

2. Ordinary Assignment

Ordinary assignment associates a value, i.e. an array, with a variable
name. For example:

a_
2 3
and
c.b_’abcdef’

In the latter case the assignment is to the variable b in the context
named c:

$cx c " Enter the context named c
$vars
b " b is in the context c
$cx . " Return to the root context
$vars

a " a is in the root context

Ordinary assignment can also be expressed in the form (a)_b. When used
inside a function definition, any appearance of a_b means that a will
be a local variable, while the form (a)_b can be used to assign a
value to the global variable a.

3. Strand Assignment

2

Several ordinary assignments can be incorporated into one by way of
strand assignment. For example:

(a;c.b)_(’ABC’;10+
3 4)

Strand assignment is important when working with dependencies. See the
discussion of commit and cancel for sets of dependencies in the
section on Cyclic Dependencies in the A to A+ document.

4. Value and Value in Context Assignment

Symbols are convenient form for managing names in A+ applications, and
there is a primitive function that evaluates symbols holding the names
of global variables.

4a. Value

Value is the monadic primitive function denoted by % that takes a
symbol holding a global variable name as its argument and produces the
value of the global variable. For example, your A+ session should now
be in the root context, and we can then continue the above example as
follows:

%‘a
ABC
%‘c.b
10 11 12 13
14 15 16 17
18 19 20 21

4b. Value in Context

Value in Context is the dyadic primitive denoted by %, which permits a
symbol on the left representing the context of the variable on the
right.

‘%‘a " The empty symbol ‘ denotes the root context
ABC
‘c%‘b
10 11 12 13
14 15 16 17
18 19 20 21

3

4c. Value and Value in Context Assignment

Both Value and Value in Context can be used on the left side of
assignment.

(%‘a)_�|a
a
CBA
(‘c%‘b)_10#%‘c.b
c.b
100 110 120 130
140 150 160 170
180 190 200 210

Both Value and Value in Context assignment are important when working
with callback functions. See the A to A+ document for discussions of
callback functions.

5. Bracket Index Selective Assignment

Just as bracket indexing can be used to select subarrays, it can also
be used on the left side of the assignment arrow to specify subarrays.
Here are a series of examples applying bracket index selective
assignment to a variable x. The examples have been chosen to make it
fairly easy to look at x after each assignment to verify that you
understand the change that took place.

x_
3 5 6
x[0;0;0]_50 " Specify the element at coordinates (0,0,0)
x[0;1]_100+
6 " Specify the rank one cell at coordinates (0,1)
x[0;1;]_200+
6 " Specify the same rank one cell in a different way
x[2]_1000+x[2] " Specify the second item
x[2;;]_1000+x[2] " Specify the same item in a different way

Any bracket index expression that can be used to select a subarray can
be used to replace that subarray. The replacement array must have the
same shape as the indexed subarray, or it must have one element. In
the latter case, the one element in the replacement array replaces
every element of the indexed subarray.

x_
3 5 6 " Restart
�x[1 2;;2+
2 2]
2 5 2 2

x[1 2;;2+
2 2]_100+x[1 2;;2+
2 2]

4

x[1 2;;2+
2 2]_1000

5a. Repeated Indices

What about repeated elements in the bracket index expression? Let’s
look at a simple example:

y_
10
y[2 2 2]_ 30 40 50

The question is: element y[2] is associated with three distinct
elements for replacement: 30, 40, and 50. What is the value of y[2]
after the above assignment? The answer is: the one with the highest
index in the ravel of the right argument.

y[2]
50

Another example:

y[2 2�3 3 3 3]_2 2� 100 200 300 400
y[3]

400

Finally, note that Value, Value in Context, and Ravel can be used with
bracket indexed selective assignment.

z_
5 6
(,%‘z)[4 5 6]_100 200 300

5b. Replace All: a[]_b

This is a special form of bracket index selective assignment for
replacing all the elements in the variable named on the left of the
assignment arrow. Either the shape of the array on the right must be
identical to the shape of the value of the variable on the left, or
the array on the right must have one element. In the latter case,
every element of the array on the left is replaced with the single
element on the right. For example:

a_
3 4
a[]_?3 4�100
or
a[]_5

5

�a
3 4

The differences between a_b and a[]_b are:

a_b copies b into a new (replacement) copy of a, but a[]_b copies b
into the existing a;

a_b enforces no (prior) compatibility restraints on a and b, but a[]_b
is valid only if a and b have compatible types, and either identical
shapes or b has one element.

However, a[]_b is the most efficient way to replace an entire mapped
file.

5c. Append: a[,]_b

This is another special form of bracket index selective assignment for
appending items onto the end of an array. For example:

a_
2 5
a[,]_10 20 30 40 50
a
0 1 2 3 4
5 6 7 8 9

10 20 30 40 50

Execution of a[,]_b can be more efficient then a_a,b because if there
is enough unused space in the storage area allocated to a, then b can
simply be copied into the area at the end of a. This form of
specification is the most efficient way to update a mapped file.

6. Choose-Pick Selective Assignment

The basic rule for bracket index selective assignment applies to
Choose-Pick selective assignment as well: if the arrays i and p are
such that i#p�x selects a subarray from x, then:

" (i#p�x)_a

will replace that subarray. Since # denotes the primitive Choose
function and � denotes the primitive Pick function, this is called
Choose-Pick selective assignment.

6

Value, Value in Context, and Ravel can be used with Choose-Pick
assignment, as in:

" (i#,p�‘c%‘x)_a

Examples:

x_(1 2 3;
5 6;’abced’) A three element boxed vector
1 2#2�x bc
(1 2#2�x)_’XY’
(1 2;3 4 5)#1�x
9 10 1
15 16 17
((1 2;3 4 5)#1�x)_100+?2 3�10

Examine x to see the changes. Another example:

(1 6 17 25#,1�x)_1000 2000 3000 4000

Examine x now and you will see that the last selective assignment did
not replace a rectangle subarray of 1�x, but instead modified elements
scattered throughout x. This type of scattered assignment is most
efficiently done to the ravel of the target array; if the array is not
raveled, then Choose can only address these elements one at a time, as
in:

((0;1);(1;0);(2;5);(4;1))#�<1�x
< 1000
< 2000
< 3000
< 4000

Note the <1�x is just 1#x, but the former construct was used to make
the comparison with the earlier examples easier.

It is left to you to make examples using Value and Value in Context.

7. Primitive Functions in Selective Assignment Expressions

Some A+ primitive functions can be used in expressions on the left of
the assignment arrow. They are: Take, Drop, Replicate, Expand, Ravel
and Item Ravel, Reshape, Rotate and Reverse, and Transpose (monadic
and dyadic.) Defined functions can also be used, but in the same ways
as these primitives, and therefore are not discussed here. See the A+
Reference Manual.

7

For example:

a_4 5�’abcdefghijklmnopqrst’
(2^a)_2 5�’ABCDEFGHIJ’
a

ABCDE
FGHIJ
klmno
pqrst
(5^a)_5 5�’abcdefghijKLMNOPQRSTUVWXY’
a
Ybcde
fghij
KLMNO
PQRST

The last result gives us a clue to the definition of this form of
selective assignment. Let

(f a)_b

represent the selective assignment for the monadic primitive functions
listed above, where a represents a variable name. Then the definition
of the assignment is as follows: first evaluate

i_f
�a

to get an array i, and then do the bracket index selective assignment

(,a)[i]_b

Why does this work? The reasons are these:

the elements of
�a are exactly all indices of ,a;

&/(,f
�a)�,
�a has the value 1.

Make sure you understand these reasons.

Applying the definition to the last example above, evaluate 5^
�a to
get the index array i:

i_5^
�a
i
0 1 2 3 4

8

5 6 7 8 9
10 11 12 13 14
15 16 17 18 19
0 0 0 0 0

Then evaluate

(,a)[i]_5 5�’abcdefghijKLMNOPQRSTUVWXY’

to get the result in the example. The fact that a[0;0] is ’Y’ is
explained by the rule for repeated elements in i (see Repeated
Indices.)

The definition for the dyadic primitives is similar. In this case the
right argument a, which must be a name, is the target of the
assignment and the left argument x is any conformable array for which
x f a is valid. Then

(x f a)_b

is evaluated by

i_x f
�a

(,a)[i]_b

Note that the primitive functions listed above all have the property
that the elements of the intermediate index array i are always a
subset of
�a, which means that (,a)[i]_b can never fail because of an
index error (see reasons 1) and 2) above.)

Value, Value in Context, Pick and Ravel can all be used with this form
of selective assignment. See the A+ Reference Manual.

9

