
The Boolean Constraint Solver of SWI-Prolog:

System Description

Markus Triska

Database and Artificial Intelligence Group
Vienna University of Technology
triska@dbai.tuwien.ac.at

https://www.metalevel.at

Abstract. We present a new constraint solver over Boolean variables,
available as library(clpb)1 in SWI-Prolog. Our solver distinguishes
itself from other available CLP(B) solvers by several unique features:
First, it is written entirely in Prolog and is hence portable to differ-
ent Prolog implementations. Second, it is the first freely available BDD-
based CLP(B) solver. Third, we show that new interface predicates al-
low us to solve new types of problems with CLP(B) constraints. We also
use our implementation experience to contrast features and state neces-
sary requirements of attributed variable interfaces to optimally support
CLP(B) constraints in different Prolog systems. Finally, we also present
some performance results and comparisons with SICStus Prolog.

Keywords: CLP(B), Boolean unification, Decision Diagrams, BDD

1 Introduction

CLP(B), Constraint Logic Programming over Boolean variables, is a declara-
tive formalism for reasoning about propositional formulas. It is an important
instance of the general CLP(·) scheme introduced by Jaffar and Lassez [11] that
extends logic programming with reasoning over specialized domains. Well-known
applications of CLP(B) arise in circuit verification and model checking tasks.

There is a vast literature on SAT solving, and there are many systems and
techniques for detecting (un)satisfiability of Boolean clauses (see [18], [14], [22]
and many others).

However, a CLP(B) system is different from common SAT solvers in at least
one critical aspect: It must support and take into account aliasing and unifica-
tion of logical variables, even after SAT constraints have already been posted.
Generally, CLP(B) systems are more algebraically oriented than common SAT
solvers: In addition to unification of logical variables, they also support variable
quantification, conditional answers and easy symbolic manipulation of formulas.
In this paper, we discuss several use cases and consequences of these features.

This paper is organized as follows: In Section 2, we briefly outline the cur-
rent state of available CLP(B) systems, followed by a brief discussion of Binary

1

The final publication is available at Springer via:
http://dx.doi.org/10.1007/978-3-319-29604-3 4

Documentation: http://eu.swi-prolog.org/man/clpb.html

https://www.metalevel.at
http://eu.swi-prolog.org/man/clpb.html

Decision Diagrams. In Section 4, we present the interface and implementation
of a new CLP(B) system, its distinguishing new features, a comparison of at-
tributed variable interfaces and necessary requirements for optimally supporting
CLP(B) solvers on top of Prolog. Section 5 describes new applications made
possible by the new features of our library, followed by performance results and
a brief discussion of implementation variants and planned features.

2 Current CLP(B) systems and implementation methods

Support of CLP(B) constraints has been somewhat inconsistent between and
even within different Prolog systems over the last few decades. CHIP [9] was
one of the first widely used systems to support CLP(B) constraints, and shortly
after, SICStus Prolog supported them too [4], up until version 3. However, more
recent versions of SICStus Prolog, while shipping with a port of the clpb library,
do not officially support the solver in any way.2 In contrast, Prolog IV [1] and
GNU Prolog [8] do support Boolean constraints.

Implementation methods of CLP(B) systems are likewise diverse. We find
two main implementation variants used in major Prolog systems: (1) implemen-
tations based on Binary Decision Diagrams (BDDs) and (2) approximation of
CLP(B) constraints by other constraints, using for example indexicals. SICStus
Prolog is an instance of the former variant, and GNU Prolog one of the latter.

Each of these variants has strengths and weaknesses: Among the major ad-
vantages of BDD-based implementations we find completeness and some alge-
braic virtues which we will explain in later sections of this paper. In comparison,
approximation-based implementations are generally simpler, more scalable and
much more efficient on selected benchmarks [5]. However, they are incomplete in
general and require an explicit search to ensure the existence of solutions after
posting constraints.

3 Binary Decision Diagrams (BDDs)

A Binary Decision Diagram (BDD) is a rooted, directed and acyclic graph and
represents a Boolean function [2,12]. In this paper, we assume all BDDs to be
ordered and reduced. This means, respectively, that all variables appear in the
same order on all paths from the root, and that the representation is minimal
in the sense that all isomorphic subgraphs are merged and no redundant nodes
occur.

In the Prolog community, BDDs have already appeared several times: Apart
from the CLP(B) library used in SICStus Prolog, we also find BDDs in the
form of small Prolog code snippets. For example, Richard O’Keefe has gener-
ously made a small library available for his COSC410 course in the year 2011.3

2 The documentation of SICStus Prolog 4.3.2 contains the exact wording of current
support terms of the clpb module that ships with the system: “The library module
is a direct port from SICStus Prolog 3. It is not supported by SICS in any way.”

3 Source: http://www.cs.otago.ac.nz/staffpriv/ok/COSC410/robdd.pl

http://www.cs.otago.ac.nz/staffpriv/ok/COSC410/robdd.pl

BDDs also occur in publications that introduce or use closely related data struc-
tures [20,19]. Within the logic programming community, important applications
of BDDs arise in the context of probabilistic logic programming [13] and termi-
nation analysis of Prolog programs [3,6].

4 A new CLP(B) system: library(clpb) in SWI-Prolog

We have implemented a new CLP(B) system, freely available in SWI-Prolog [21]
as library(clpb). In this section, we present the design choices, interface pred-
icates and implementation. Subsections 4.5, 4.6 and 4.7 are targeted at imple-
mentors and contributors of Prolog systems and constraint libraries, and assume
familiarity with BDDs and Prolog interfaces for attributed variables.

4.1 Implementation choices: BDDs, SAT solvers, external libraries

Before presenting the actual features and implementation of our new system, we
present a brief high-level overview of the various implementation options and
their consequences, and give several reasons that justify the choices we have
made in our implementation.

When implementing a new CLP(B) system, we typically have a clear idea
of what we need from it. Also in our case, the intended use was very clear
from the start: Since 2004, the author has been working on facilitating a port
of Ulrich Neumerkel’s GUPU system [16,17] to SWI-Prolog so that more users
can freely benefit from it. GUPU is an excellent Prolog teaching environment,
and one of its integrated termination analyzers, cTI [3], heavily depends on
the CLP(B) implementation of SICStus Prolog. Already a cursory glance at
the source code of cTI makes clear that it depends on features that only a
BDD-based solver can provide, since cTI goes as far as inspecting the concrete
structure of BDDs in its implementation.

Still, we initially hoped for a shortcut: Our hope was that we could simulate
the behaviour of a BDD-based CLP(B) system by using a simpler (external or
internal) SAT solver. For example, we envisioned that checking for tautologies
could be easily handled by looking for counterexamples of the accumulated con-
straints, and checking consistency of accumulated constraints could be handled
by trying to generate concrete solutions after posting each constraint.

Alas, such a simplistic approach falls short for several reasons. One of those
reasons is efficiency: For example, detecting tautologies (a prominent operation
in cTI) is hard in general, but easy after BDDs have been built. Another, more
fundamental reason is that many use cases of CLP(B) depend on symbolic results
instead of “only” detecting satisfiability, and such results are much more readily
obtained with BDD-based approaches.

As a simple example, consider the integrated circuit shown in Fig. 1 (a).
A Prolog program that describes the circuit with CLP(B) constraints (see Sec-
tion 4.2) is shown in Fig. 1 (b). No concrete solutions are asked for by that
program: To verify the circuit, we care more about the symbolic expressions

that are obtained as residuals goals of this program, and less about concrete
solutions. For example, with the given program, the query ?- xor(x, y, Z).

yields the residual goal sat(Z=:=x#y), expressing Z as a function of the intended
input variables, which are universally quantified. From this, we see at one glance
that the circuit indeed describes the intended Boolean xor operation. When pro-
ducing residual goals, existential quantification is implicitly used by the Prolog
toplevel to project away variables that do not occur in the query.

Y

X

Z

(a)

 :− use_module(library(clpb)).

 nand_gate(X, Y, Z) :− sat(Z =:= ~(X*Y)).

 xor(X, Y, Z) :−
 nand_gate(X, Y, T1),
 nand_gate(X, T1, T2),
 nand_gate(Y, T1, T3),
 nand_gate(T2, T3, Z).

(b)

Fig. 1: (a) Expressing xor (X⊕Y = Z) with four nand gates and (b) describing
the circuit with CLP(B) constraints. ?- xor(x, y, Z). yields sat(Z=:=x#y).

To efficiently provide such features and others (see also Section 4.4), we
decided to base our implementation on BDDs instead of only emulating them.

Having made the decision to implement a BDD-based CLP(B) system, the
next arising question was how to actually use BDDs so that they work in the
context of CLP(B). Even though the excellent implementation description of an
existing BDD-based CLP(B) system [4] was of course available to us, many un-
settled questions still remained, such as: How is an existing BDD changed after
unification of two variables? How do we handle unification of two variables that
reside in different BDDs? How exactly does the notion of universally quanti-
fied variables affect all operations on BDDs? How are residual goals produced?
Finally, are there not some subtly misguiding mistakes in the implementation
description, e.g., is a BDD really represented by a ground Prolog term in SICStus
Prolog, or are there not variables also involved?

In the face of so many initially unsettled questions, we anticipated a lot of
prototyping and rewriting in the initial phase of our implementation, which also
turned out to be necessary. To facilitate prototyping, enhance portability, and to
study and answer high-level semantic questions separated from lower-level issues,
we are consciously not hard-wiring our solver with an external BDD package
until semantic aspects (see Section 4.7) are settled to provide a more stable
basis for low-level changes. Therefore, we have created a new high-level Prolog
implementation of BDDs that forms the basis of our new CLP(B) system.

We consider the availability of a completely free CLP(B) system where the
above questions are answered in the form of an executable specification an in-
tegral part of our contribution, since it also shows the places where, if at all,
external BDD libraries can be most meaningfully plugged in.

4.2 Syntax of Boolean expressions

We have strived for compatibility with SICStus Prolog and provide the same
syntax of Boolean expressions. Table 1 shows the syntax of all Boolean expres-
sions that are available in both SICStus and SWI-Prolog. Universally quantified
variables are denoted by Prolog atoms in both systems, and universal quantifiers
appear implicitly in front of the entire expression. Atoms are useful for denot-
ing input variables: In residual goals, intended output variables are expressed
as functions of input variables. The expression card(Is,Exprs) is true iff the
number of true expressions in the list Exprs is a member of the list Is of integers
and integer ranges of the form From-To.

In addition to the Boolean expressions shown in Table 1, we have also chosen
to support two new Boolean expressions. These new expressions are shown in Ta-
ble 2. They denote, respectively, the disjunction and conjunction of all Boolean
expressions in a list. We have found this syntax extension to be very useful in
many practical applications, and encourage their support in other CLP(B) sys-
tems. This syntax was kindly suggested to us by Gernot Salzer.

expression meaning

0, 1 false, true
variable unknown truth value
atom universally quantified variable

~Expr logical not
Expr + Expr logical or
Expr * Expr logical and
Expr # Expr exclusive or

Var ^ Expr existential quantification
Expr =:= Expr equality
Expr =\= Expr disequality (same as #)
Expr =< Expr less or equal (implication)
Expr >= Expr greater or equal
Expr < Expr less than
Expr > Expr greater than

card(Is,Exprs) see description in text

Table 1: Syntax of Boolean expressions available in both SICStus and SWI

expression meaning

+(Exprs) disjunction of list Exprs of expressions
*(Exprs) conjunction of list Exprs of expressions

Table 2: New and useful Boolean expressions in SWI-Prolog

4.3 Interface predicates of library(clpb)

Regarding interface predicates of our system, we have again strived primarily
for compatibility with SICStus Prolog, and all CLP(B) predicates provided by
SICStus Prolog are also available in SWI-Prolog with the same semantics. In
particular, the interface predicates available in both systems are:

sat(+Expr): True iff the Boolean expression Expr is satisfiable.

taut(+Expr, -T): Succeeds with T=0 if Expr cannot be satisified, and with T=1

if T is a tautology with respect to the stated constraints. Otherwise, it
fails.

labeling(+Vs) Assigns a Boolean value to each variable in the list Vs in such
a way that all stated constraints are satisfied.

4.4 New interface predicates

BDDs have many important virtues that can be easily made available in a BDD-
based CLP(B) system. The core idea of efficient algorithms on BDDs is often to
combine the solutions for the two children of every BDD node in order to obtain
a solution for the parent node.

In addition to the interface predicates presented in the previous section, we
have implemented three new predicates that are not yet available in SICStus
Prolog:

sat count(+Expr, -N): N is the number of different assignments of truth
values to the variables in the Boolean expression Expr, such that Expr is
true and all posted constraints are satisfiable.

random labeling(+Seed, +Vs): Assigns a Boolean value to each variable in
the list Vs in such a way that all stated constraints are satisfied, and each
solution is equally likely, using random seed Seed and committing to the
first solution.

weighted maximum(+Weights, +Vs, -Maximum): Assigns 0 and 1 to the vari-
ables in Vs such that all stated constraints are satisfied, and Maximum is
the maximum of

∑

wivi over all admissible assignments. On backtracking,
all admissible assignments that attain the optimum are generated.

As we show in the following section, these predicates are of great value in
many applications, and we encourage their support in other CLP(B) systems
based on BDDs. This is because these predicates are very easy to implement
with BDD-based approaches, and omitting them deprives users of these benefits,
unnecessarily.

Using the new +/1 syntax to express the disjunction of Boolean expressions in
a list, we also suggest the new idiom sat count(+[1|Vs], N) to count the num-
ber of assignments of truth values to variables in Vs that satisfy all constraints
that are posted so far, without further constraining the set of solutions.

4.5 Implementation

We briefly outline the underlying ideas of our implementation. Perhaps most
strikingly, our library is written entirely in Prolog. This is a deliberate design
decision, facilitating rapid prototyping and portability. To the best of our knowl-
edge, ours is the first BDD-based CLP(B) system that is freely available. Our
library comprises about 1, 700 LOC, including documentation and comments.

Internally, we are using the following representation, using attributed vari-

ables as in hProlog [7]: Each CLP(B) variable belongs to exactly one BDD. Each
CLP(B) variable gets an attribute of the form index root(Index,Root), where
Index is the variable’s unique integer index, and Root is the root of the BDD
that the variable belongs to.

Each CLP(B) variable is also equipped with an association table that helps us
keep the BDD reduced. The association table of each variable must be rebuilt on
occasion to remove nodes that are no longer reachable. We rebuild the association
tables of involved variables after BDDs are merged to build a new root. This
only serves to reclaim memory: Keeping a node in a local table even when it no
longer occurs in any BDD does not affect the solver’s correctness.

A root is a logical variable with a single attribute, a pair of the form Sat-BDD,
where Sat is the Boolean expression (in original form) that corresponds to BDD.
Sat is necessary to rebuild the BDD after variable aliasing, and to project all
remaining constraints to a list of sat/1 goals.

Finally, a BDD is either: (1) The integers 0 or 1, denoting false and true,
respectively, or (2) a node of the form node(ID,Var,Low,High,Aux), where:

– ID is the node’s unique integer ID
– Var is the node’s branching variable
– Low and High are the node’s low (Var = 0) and high (Var = 1) children
– Aux is a free variable, one for each node, that can be used to attach attributes

and store intermediate results.

This representation means that we are using (assuming SWI-Prolog and
machine-sized integers) 48 bytes per node on 64-bit systems, and we need to
store this roughly twice because each node is also represented in the association
table of its branching variable.

In addition to this considerable memory overhead, our choice to use associa-
tion tables incurs a logarithmic runtime overhead compared to hashing. On the
plus side, association tables scale very predictably and do not require any ad hoc

considerations and complex treatment of edge-cases.
Fig. 2 shows an essential predicate of our library: It is called make node/4,

and given a branching variable and its two children, it builds (low high key/3)
a unique Key and, depending on whether such a node already exists, either
yields that node, or builds a new node. A unique ID is generated for each new
node by incrementing a global backtrackable variable called $clpb next node.
The predicates lookup node/3 and register node/3 (implementation omitted)
access the branching variable’s association table to fetch or store a node. In

1 make_node(Var, Low, High, Node) :−
2 (Low == High −> Node = Low
3 ; low_high_key(Low, High, Key),
4 (lookup_node(Var, Key, Node) −> true
5 ; clpb_next_id(’$clpb_next_node’, ID),
6 Node = node(ID,Var,Low,High,_Aux),
7 register_node(Var, Key, Node)
8)
9).

Fig. 2: make node/4, the essential predicate for creating a BDD node

addition, if the two children are identical, then the resulting node is simply that
child itself. Thus, make node/4 automatically keeps the BDD reduced.

Many of the implemented algorithms use memoization to store intermediate
results for later use. We are using DCGs and semicontext4 notation in several
internal predicates to implicitly thread through stored results. We refer inter-
ested readers to the source code of our library for the fully detailed picture of
the implementation.

4.6 Consistency notions in the context of CLP(B)

Completeness of our CLP(B) system follows from the well-known fact that, for
fixed variable order and function, the corresponding BDD is canonical. Hence,
as long as all BDDs that represent the posted constraints are different from 0,
there is at least one admissible solution.

In addition, the well-known CLP(FD) notion of domain consistency is of
course equally applicable to CLP(B): For example, when posting the constraint
sat(X*Y + ~X*Y), then a domain consistent CLP(B) solver must yield the uni-
fication Y = 1. We implement domain consistency in our CLP(B) system, and,
although this is not documented and does not directly follow from its implemen-
tation description, library(clpb) in SICStus Prolog seems to implement this
as well.

In fact, SICStus Prolog goes even beyond domain consistency, and seems to
implement an undocumented additional property that, for lack of an established
terminology (see also [10]), we shall call aliasing consistency. By this, we mean
that if taut(X =:= Y, 1) holds for any two variables X and Y, then X = Y is
posted. For example, when posting sat((A#B)*(A#C)), then an aliasing consis-
tent CLP(B) solver must yield the unification B = C.

We implement both consistency notions as follows: First, in a single global
sweep of the BDD, we collect all variables that are not skipped in any branch
of the BDD that leads to 1. It is easy to see that if a variable is skipped in a
branch that leads to 1, then it can assume both possible truth values, and cannot
be involved in any aliasing. The collected variables are further classified into
(1) variables that allow only a single truth value, (2) further-branching variables

4 A Prolog DCG primer is available at https://www.metalevel.at/prolog/dcg

https://www.metalevel.at/prolog/dcg

(i.e., variables that do not have 1 as any child in any node) and (3) negative-

decisive variables (i.e., variables that have 0 as one child in all nodes). It is
easy to see that any potential aliasing must involve one further-branching and
one negative-decisive variable, and in additional partial sweeps of the BDD, we
determine all unifications that hold among the collected variables.

We have tested the impact of enabling domain and aliasing consistency on a
range of benchmarks, and generally found the impact to be very acceptable and
sometimes even improving the running time. For this reason, we have opted to
enable both consistency notions and benefit from their algebraic properties.

4.7 Unification of attributed variables

At the time of this writing, there is no consensus across different Prolog systems
regarding the interface predicates for attributed variables. Two different inter-
faces used by major implementations are, respectively, the one used by SICStus
Prolog, and the one used by hProlog and SWI-Prolog. The most striking differ-
ence between these two interfaces (see [7]) is that in SICStus Prolog, unifications
are undone before verify attributes/3 is called, whereas for example in SWI-
Prolog, attr unify hook/2 is called with the unification already in place.

Using our implementation experience, we strongly endorse the SICStus in-
terface and its greater generality. We justify this with three different arguments:

(1) The interface used in SWI-Prolog is not general enough to express what
we need. For example, according to the documentation of SICStus Prolog, the
unification P = Q of two CLP(B) expressions P and Q is equivalent to post-
ing sat(P =:= Q). In SWI-Prolog, we cannot fully implement this semantics,
because at the time the unification hook is called, the unification has already
taken place and may have created a cyclic term instead of retaining variables.

(2) The interface used in SWI-Prolog makes it extremely hard to reason
about simultaneous unifications. Critically, two variables may be instantiated
simultaneously, using for example [X,Y] = [0,1]. This may not pose any prob-
lem when admissible unifications can be determined from ground values alone,
but it is a severe limitation when additional structures such as decision diagrams,
typically stored in attributes, are required. This is because when the unification
hook is called for X, then Y is no longer a variable and its previous attributes
cannot be directly accessed.

(3) The interface used in SWI-Prolog makes reasoning about unifications
extremely error-prone. For example, when unifying two CLP(B) variables, the
unification hook is called with the two variables already aliased and in fact
identical. In our experience, failure to take possible aliasings into account is a
common mistake when working with the SWI interface, and it would improve
ease of use considerably if, as in the SICStus interface, unifications were undone
before the unification hook is invoked by SWI-Prolog.

It is clear that the SICStus interface has some performance impact, because
unifications have to be undone. In our view, this small disadvantage is completely
negligible when taking into account the increased generality and ease of use of
the SICStus interface.

5 New applications of library(clpb)

In this section, we present new applications of our CLP(B) system to illustrate
the value of the new interface predicates that we provide. Importantly, these
applications all rely exclusively on the CLP(B) interface predicates that are ex-
plained in the previous section. In other words, they do not use any low-level
primitives that directly manipulate a BDD. Instead, everything is expressed
as sat/1 constraints, and the new interface predicates are used to count so-
lutions and select solutions etc. Similar functionality is also available in many
BDD packages. However, a CLP(B) system is much more convenient to use than
a low-level library, and different formulations of the same problem can be tried
more easily.

5.1 Counting solutions

We now apply the new interface predicates of our CLP(B) solver to solve a
problem that asks for the number of solutions. It is one of the problems posed
in the well known set of challenging mathematical tasks called Project Euler.5

Specifically, it is:

Project Euler Problem 172: How many 18-digit numbers n (without lead-
ing zeros) are there such that no digit occurs more than three times in n?

One way to solve this problem is to find a recursive formula that breaks
the problems into smaller parts, and to use memoization to make computed
intermediate results quickly available for later reference.

However, in our experience, such a way to solve this problem is comparatively
tedious and error-prone: It is easy to overlook a case, or to accidentally count
some combinations multiple times. Thus, it is hard to be absolutely certain about
the correctness of a recursive formula in such cases.

In contrast, the problem has a completely straight-forward and short formu-
lation using CLP(B) constraints: We can use Boolean variables vi (0 ≤ i ≤ 9) to
represent a single digit d, where vi = 1 indicates that d = i. This method nat-
urally scales to multiple digits by using further sets of variables for subsequent
digits. Fig. 3 shows how to indicate the number 2016 in this way, where each
row corresponds to one digit.

0 0 1 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0

Fig. 3: Representing 2016 with a Boolean 4× 10 matrix, using one row per digit

5 See http://projecteuler.net for more information.

http://projecteuler.net

Obviously, exactly one of vi must be 1 to specify the unique value of a single
digit. Thus, if vi are represented as a Prolog list Ls of 10 Boolean variables, we
state sat(card([1],Ls)) in terms of CLP(B).

The main constraint of the puzzle is readily expressed over each column of
the resulting matrix, using sat(card([0,1,2,3],Ls)) to constrain each digit
to occur at most 3 times.

Fig. 4 shows the complete Prolog code to solve the problem with CLP(B).
The query euler 172(N) yields N = 227485267000992000 after about 7 hours of
computation time, using an Intel Core i7 CPU (2.67GHz) and about 20GB RAM
with SWI 7.3.7.

1 :− use_module(library(clpb)).
2 :− use_module(library(clpfd)).
3

4 euler_172(N) :−
5 findall(Ds, (between(1,18,_),length(Ds,10)), Digits),
6 Digits = [[0|_]|_], % no leading zero
7 transpose(Digits, DigitsT),
8 maplist(card([0,1,2,3]), DigitsT),
9 maplist(card([1]), Digits),
10 append(Digits, Vs),
11 sat_count(+[1|Vs], N).
12

13 card(C, Ls) :− sat(card(C, Ls)).

Fig. 4: Using CLP(B) constraints to solve Project Euler Problem 172

In contrast to the recursive version and complex combinatorial considera-
tions, there is hardly any room for errors with such a simple CLP(B) model.

5.2 Random solutions

In our second example, we apply CLP(B) constraints to model an exact cover

problem. The task is to cover an N ×N chessboard with triominoes, which are
rookwise connected pieces with three cells.

We use the following CLP(B) encoding: Each cell of the chessboard corre-
sponds to a column of a matrix (bij), and each possible placement of a single
triomino corresponds to one row. bij = 1 means that placing a triomino accord-
ing to row i covers cell j. For each row, we introduce a Boolean variable xk,
where xk = 1 means that we choose to place a triomino according to row i.
An exact cover of the chessboard means that for each set Sl of Boolean vari-
ables, Sl = {xk | bkl = 1}, exactly one of the variables in Sl is equal to 1, i.e.,
sat(card([1],list(Sl))) holds, with list(Sl) denoting a Prolog list correspond-
ing to Sl.

In Fig. 5, subfigures (a) and (b) illustrate a common phenomenon when
using CLP(FD) constraints to solve such tasks: Successive solutions are of-
ten very much alike. Simply adding randomization to labeling/2 is in gen-
eral not sufficient to guarantee random solutions due to potential clustering of

solutions. Subfigures (c) and (d) illustrate that solutions can be selected with
uniform probability with CLP(B) constraints, using the new interface predi-
cate random labeling/2.

(a) (b) (c) (d)

Fig. 5: Exact covers of a 6 × 6 chessboard. (a) and (b) are successive solutions
found with CLP(FD) constraints. (c) and (d) are found with CLP(B), using
random seeds 0 and 1, respectively.

5.3 Weighted solutions

In the third example, we use the new interface predicate weighted maximum/3

to maximize the number of Boolean variables that are true.
The example we use to illustrate this concept is a simple matchsticks puzzle.

The initial configuration is shown in Fig. 6 (a), and the task is to keep as many
matchsticks as possible in place while at the same time letting no subsquares
remain. For example, in Fig. 6 (b), exactly 7 subsquares remain, including the
4× 4 outer square. Fig. 6 (c) shows an admissible solution of this task.

(a) (b) (c)

Fig. 6: (a) A grid of matchsticks, (b) exactly 7 subsquares remaining and (c)
removing the minimum number of matchsticks so that no subsquares remain

Such puzzles are readily formulated with CLP(B) constraints, using one
Boolean variable to indicate whether or not a matchstick is placed at a par-
ticular position. Our new interface predicates make it easy to find and count
solutions, and also to maximize or minimize the number of used matchsticks.

CLP(B) constraints are not limited to very small puzzles and toy examples
though: For tasks of suitable structure, CLP(B) constraints scale quite well and
let us solve tasks that are hard to solve by other means.

In the next example (taken from [12]), we use CLP(B) constraints to express
maximal independent sets of graphs: Boolean variables bi denote whether node i
is in the set. In addition, each node i is assigned a weight wi. The task is to
find a maximal independent set that maximizes the total weight

∑

biwi. For
concreteness, let us consider the cycle graph C100, and assign each node i the
weight wi = (−1)ν(i), where ν(i) is the number of ones in the binary representa-
tion of i. The grey nodes in Fig. 7 show a maximal independent set of C100 with
maximum total weight. In the figure, nodes with negative weight are drawn as
squares, and nodes with positive weight are drawn as circles.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

181920212223242526272829303132

33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48

495051525354555657585960616263

64 65 66 67 68 69 70 71 72 73 74 75 76 77

7879808182838485868788899091929394

95 96

9798

99

100

Fig. 7: Maximal independent set of C100 with maximum weight (= 28)

CLP(B) constraints yield the optimum (28) within a few seconds in this
example. Moreover, we can use our new interface predicates to compute other
interesting facts. For example, C100 has exactly 792,070,839,848,372,253,127 in-
dependent sets, and exactly 1,630,580,875,002 maximal independent sets.

6 Benchmark results

We now use several benchmarks to compare the performance of our system with
the CLP(B) library that ships with SICStus Prolog. We are using SWI-Prolog
version 7.3.7, and SICStus Prolog version 4.3.2. All programs are run on an Intel
Core i7 CPU (2.67GHz) with 48GB RAM, using Debian 8.1.

The benchmarks comprise examples6 from the literature that are also used
in [4] and other publications:

pigeon8x9: The task of attempting to place 9 pigeons into 8 holes in such a
way that each hole contains at most one pigeon. Clearly, this problem is
unsatisfiable.

queens N : Placing N queens on an N ×N chessboard in such a way that no
queen is under attack.

6 The code of all benchmarks is available at https://www.metalevel.at/clpb-bench

https://www.metalevel.at/clpb-bench

schur N : Distribute the numbers 1, . . . , N into 3 sum-free sets. A set S is
sum-free iff i, j ∈ S implies i + j 6∈ S. This is satisfiable for all N up to
and including the Schur number S(3) = 13, and unsatisfiable for N > 13.

triominoes N : Triomino cover (see Section 5.2) of an N ×N chessboard.

We benchmark each example in three different ways, and the results are sum-
marized in Table 3: First, we build a single conjunction C of all clauses and
post sat(C). The columns titled sat show the timing results (in seconds) of this
call for SWI and SICStus, respectively. Then, we build a list Cs of clauses and
post maplist(sat, Cs). The timing result of this is shown in the sats columns.
Finally, we invoke taut(C,), and the timing results of this call are shown in
the taut columns.

SWI 7.3.7 SICStus 4.3.2
name vars clauses

sat sats taut sat sats taut

pigeon8x9 72 17 1.2 1.2 1.2 0.07 0.01 0.05
queens6 36 302 12.7 12.8 12.9 0.01 2.7 0.01
queens7 49 490 65.7 65.9 67.3 3.62 22166 0.03
schur13 39 139 10.6 10.7 10.7 0.31 2.8 0.19
schur14 42 161 13.1 13.2 13.3 0.57 7.63 0.41

triominoes5 94 25 3.6 3.7 3.7 0.01 – 0.02
triominoes6 148 36 22.6 22.7 23.3 – – 0.08

Table 3: Running times (in seconds) of different benchmarks

There are several things worth pointing out about these results: First, it is
evident that the CLP(B) solver of SICStus Prolog often vastly outperforms our
library. We can safely expect the SICStus library to be at least two orders of
magnitude faster than ours on many benchmarks. In part, this huge difference
in performance may certainly be attributed to the fact that SWI-Prolog itself
is already more than three times slower than SICStus Prolog on benchmarks
that are in some sense deemed to be representative of many applications. Neng-
Fa Zhou, the author of B-Prolog, kindly maintains a collection of these results
at http://www.picat-lang.org/bprolog/performance.htm. Since our library
is written entirely in Prolog, it strongly depends on the performance of the
underlying Prolog system.

Second, there is a large relative difference between the sat and sats columns
within SICStus Prolog. In the queens7 case, it is particularly pronounced. In
SWI-Prolog, there is virtually no difference between these variants, because we
always implicitly post individual sat/1 constraints if the given formula is a
compound term with principal functor */2, i.e., a conjunction.

Third, some of the benchmarks cannot be solved at all with SICStus Prolog
on this machine: We use “–” to denote an insufficient memory exception.

http://www.picat-lang.org/bprolog/performance.htm

7 CLP(B) with other types of decision diagrams

BDDs are not the only kind of decision diagrams that are practically useful, and
the question arises whether other types of decision diagrams are not at least
equally suitable as the basis of CLP(B) systems.

To collect preliminary experiences with different implementation variants,
we have created a variant7 of library(clpb) that is based on Zero-suppressed
Binary Decision Diagrams (ZDDs). The key idea of ZDDs [15] is to assign a
slightly different meaning to the diagram: In ZDDs, a branch leading to 1 only
means true if all variables that are skipped in that branch are zero. ZDDs are
therefore especially useful when many variables are zero in solutions.

The ZDD-based variant of library(clpb) does not feature all the function-
ality that the BDD-based version provides. This is due to two main reasons:
The first reason is that, due to the different semantics of the diagrams, a ZDD-
based approach necessitates that all variables be known in advance, at least if we
want to avoid rebuilding all ZDDs every time a new variable occurs. Therefore,
a special library predicate must be called before using the ZDD-based version
in order to “declare” all Boolean variables that appear in the formulation. The
ZDD-based variant is thus not a drop-in replacement of the BDD-based version
that ships with SWI-Prolog.

The second reason is that the shortcomings (see Section 4.7) of SWI-Prolog’s
interface predicates for attributed variables are especially severe when ZDDs
are involved. This is because simultaneous unifications, such as [A,B] = [0,1],
significantly complicate the reasoning when deciding whether a variable (still)
occurs in a ZDD. With BDDs, these limitations are a bit less severe, because a
variable that does not occur in a BDD can assume either truth value.

So far, we have collected only very limited experience with ZDDs, in part also
due to the mentioned limitations of SWI-Prolog’s interface predicates. Neverthe-
less, we would like to point out two interesting tasks for which the ZDD-based
variant is very well suited, and hint at planned future developments.

First, we extend the triomono tiling task to a 9 × 12 grid. One solution is
shown in Fig. 8 (a). Project Euler Problem 161 asks for the number of such
tilings. Using the ZDD-based variant, it takes about 13GB RAM and 2 days of
computation time to construct a ZDD that represents all solutions and compute
the number (which is 20,574,308,184,277,971). Using the BDD-based version of
library(clpb) requires more than 4 times as much memory.

Second, we allow, in addition to triominoes, also monominoes and dominoes,
and cover an 8 × 8 chessboard. Fig. 8 (b) shows one solution. With the ZDD-
based variant, 1GB RAM suffices to compute the number of possible coverings
(there are exactly 92,109,458,286,284,989,468,604 of them). Using BDDs takes
about 10 times as much memory.

Many other interesting applications of ZDDs are described in [12], and we
plan to make many of them accessible in future versions of this library variant.
This may require suitable additional interface predicates.

7 The variant is freely available at https://www.metalevel.at/clpb-zdd

https://www.metalevel.at/clpb-zdd

(a) (b)

Fig. 8: (a) Project Euler Problem 161: Covering a 9 × 12 grid with triominoes;
(b) Covering a chessboard with monominoes, dominoes and triominoes

8 Conclusion and future work

We have presented the first BDD-based CLP(B) system that is freely available.
It features new interface predicates that allow us to solve new applications with
CLP(B) constraints.

Implementing the system in Prolog has allowed us to prototype many ideas
quickly. The implementation provides a high-level description of all relevant
ideas, and is portable to other Prolog systems that support attributed variables.

We hope that the availability of a free BDD-based CLP(B) system leads
to increased interest in CLP(B) constraints within the Prolog community, and
encourages other vendors to likewise support such libraries.

Ongoing and future work is focused on additional test cases to ensure the
system’s correctness, porting the system to other Prolog systems such as YAP
and SICStus Prolog, and improving performance. Stefan Israelsson Tampe is
currently porting the solver to Guile-log, a Prolog system based on Guile.

Additional interface predicates may be needed to cover further applications
of BDDs and ZDDs. Careful design of these predicates is necessary to provide
sufficient generality without exposing users to low-level details of the library.

9 Acknowledgments

First and foremost, I thank Ulrich Neumerkel for introducing me to constraint
logic programming and to testing constraint solvers. For their encouragement
about CLP(B), I thank Nysret Musliu and Fred Mesnard. My gratitude also
goes to Jan Wielemaker for providing a robust and free Prolog system, for his
fast reaction times and much appreciated support when discussing and imple-
menting new features. I thank Mats Carlsson for the visionary CLP(B) solver
of SICStus Prolog and sending me a complimentary version of his system. For
their supremely well-written documents about BDDs, I thank Donald Knuth
and Henrik Reif Andersen. These books and papers further increased my inter-
est in the subject and were very useful during development. I also thank the
anonymous reviewers for their helpful comments.

With all my heart, I thank my partner Barbara for her love.

References

1. Benhamou, F., Touräıvane: Prolog IV : langage et algorithmes. In: JFPLC. pp.
51–64 (1995)

2. Bryant, R.E.: Graph-Based Algorithms for Boolean Function Manipulation. IEEE
Trans. Computers 35(8), 677–691 (1986)

3. Burckel, S., Hoarau, S., Mesnard, F., Neumerkel, U.: cTI: Bottom-up termination
inference for logic programs. In: 15. WLP. pp. 123–134 (2000)

4. Carlsson, M.: Boolean Constraints in SICStus Prolog. SICS TR T91:09 (1991)
5. Codognet, P., Diaz, D.: A Simple and Efficient Boolean Solver for Constraint Logic

Programming. J. Autom. Reasoning 17(1), 97–129 (1996)
6. Colin, S., Mesnard, F., Rauzy, A.: Un module Prolog de mu-calcul booléen: une

réalisation par BDD. In: JFPLC’99, Huitièmes Journées Francophones de Pro-
grammation Logique et Programmation par Contraintes. pp. 23–38 (1999)

7. Demoen, B.: Dynamic attributes, their hProlog implementation, and a first evalu-
ation. Report CW 350, Dept. of Computer Science, K.U. Leuven (Oct 2002)

8. Diaz, D., Abreu, S., Codognet, P.: On the implementation of GNU Prolog. TPLP
12(1-2), 253–282 (2012)

9. Dincbas, M., Hentenryck, P.V., Simonis, H., Aggoun, A., Graf, T., Berthier, F.:
The constraint logic programming language CHIP. In: FGCS. pp. 693–702 (1988)

10. Hooker, J.N.: Projection, consistency, and George Boole. Constraints 21(1), 59–76
(2016)

11. Jaffar, J., Lassez, J.L.: Constraint Logic Programming. In: POPL. pp. 111–119
(1987)

12. Knuth, D.E.: The Art of Computer Programming, Volume 4, Fascicle 1: Bitwise
Tricks & Techniques; Binary Decision Diagrams. Addison-Wesley Professional,
12th edn. (2009)

13. Mantadelis, T., Rocha, R., Kimmig, A., Janssens, G.: Preprocessing Boolean For-
mulae for BDDs in a Probabilistic Context. In: Proceedings of the 12th European
Conference on Logics in Artificial Intelligence. pp. 260–272. JELIA’10, Springer-
Verlag, Berlin, Heidelberg (2010)

14. Marques-Silva, J.P.: Algebraic simplification techniques for propositional satisfia-
bility. In: CP’00. LNCS, vol. 1894 (2000)

15. Minato, S.: Zero-suppressed BDDs for set manipulation in combinatorial problems.
In: Design Automation Conference (DAC). pp. 272–277 (1993)

16. Neumerkel, U.: Teaching Prolog and CLP (tutorial). ICLP (1997)
17. Neumerkel, U., Kral, S.: Declarative program development in Prolog with GUPU.

In: Proceedings of the 12th International Workshop on Logic Programming Envi-
ronments, WLPE. pp. 77–86 (2002)

18. Selman, B., Kautz, H., Cohen, B.: Local search strategies for satisfiability testing.
Second DIMACS Implementation Challenge (1993)

19. Tarau, P.: Pairing Functions, Boolean Evaluation and Binary Decision Diagrams.
CoRR abs/0808.0555 (2008), http://arxiv.org/abs/0808.0555

20. Tarau, P., Luderman, B.: Boolean Evaluation with a Pairing and Unpairing Func-
tion. In: SYNASC 2012. pp. 384–390 (2012)

21. Wielemaker, J., Schrijvers, T., Triska, M., Lager, T.: SWI-Prolog. TPLP 12(1-2),
67–96 (2012)

22. Zhang, H.: SATO: An Efficient Propositional Prover. In: CADE. LNAI, vol. 1249
(1997)

http://arxiv.org/abs/0808.0555

	The Boolean Constraint Solver of SWI-Prolog: System Description

