
Noname manuscript No.

(will be inserted by the editor)

An Improved SAT Formulation for the Social Golfer

Problem

Markus Triska · Nysret Musliu

Received: date / Accepted: date

Abstract The Social Golfer Problem (SGP) is a sports scheduling problem that ex-

hibits a lot of symmetry and has recently attracted significant attention. In this paper,

we first revisit an existing SAT encoding for the SGP and correct some of its clauses.

We then propose a change in the encoding that significantly reduces the number of

variables for all instances. We achieve considerable performance improvements when

solving many SGP instances with common SAT solvers using local search and complete

backtracking. This makes SAT formulations a more promising approach for solving the

SGP than previously.

Keywords sports scheduling · combinatorial optimization · design theory · finite

geometry

1 Introduction

The Social Golfer Problem (SGP) is a sports scheduling problem derived from a ques-

tion that was posted to sci.op-research in May 1998. It is problem number 10 in

CSPLib, a benchmark library for constraints (Gent and Walsh 1999):

32 golfers play golf once a week, and always in groups of 4. For how many

weeks can they play such that no two players play together more than once in

the same group?

The research herein is partially conducted within the competence network Softnet Austria
(www.soft-net.at) and funded by the Austrian Federal Ministry of Economics (bm:wa), the
province of Styria, the Steirische Wirtschaftsförderungsgesellschaft mbH. (SFG), and the city
of Vienna in terms of the center for innovation and technology (ZIT).

Markus Triska (B)
Database and Artificial Intelligence Group
Vienna University of Technology
E-mail: triska@dbai.tuwien.ac.at

Nysret Musliu
Database and Artificial Intelligence Group
Vienna University of Technology
E-mail: musliu@dbai.tuwien.ac.at



2

The problem is readily generalized to the following decision problem: Is it possible

to schedule n = g×p golfers in g groups of p players for w weeks such that no two golfers

play in the same group more than once? An instance of the SGP is then denoted by

a triple g−p−w of natural numbers. In practice, one is interested in the corresponding

optimization problem that asks for the maximum number w∗ of weeks that admits a

solution for given g and p, since such a solution also implies solutions for all instances

g−p−w with w ≤ w∗.

The SGP exhibits many symmetries: Weeks, groups within weeks, and players

within groups, can all be ordered arbitrarily. In addition, players can be assigned ar-

bitrary names. Due to its highly constrained and symmetric nature, the SGP has

attracted much attention from the constraint programming community and has lead

to the development of powerful but complex dynamic symmetry breaking schemes

(Barnier and Brisset 2005; Petrie and Smith 2004). In addition to being an interesting

and hard benchmark problem, the SGP and closely related problems have many im-

portant practical applications, such as in encoding, encryption and covering problems.

Many instances of the SGP are still open, and the continuing progress of SAT solvers

makes it attractive to try a SAT formulation of the SGP. Gent and Lynce have already

proposed a SAT encoding (Gent and Lynce 2005). We first revisit their formulation.

Then, we change the formulation to significantly reduce the number of variables for

all instances. We show that this reduces computation time with common SAT solvers

considerably.

2 Related Work

Research on a problem that is very closely related to the SGP actually dates back

to Euler, who considered an instance of the SGP in a different context: Euler asked

whether two orthogonal Latin squares of order 6 exist (Colbourn and Dinitz 1996),

which has become known as “Euler’s Officer Problem”. In terms of the SGP, this

corresponds to solving the 6−6−4 instance, which is now known to be impossible. As

another special case of the SGP, the 5−3−7 instance also has a long history and is

known as Kirkman’s schoolgirl problem (Barnier and Brisset 2005).

The computational complexity of the SGP is currently unknown. Some instances

are easily solved using construction methods from design theory, a branch of discrete

mathematics, but such methods are typically restricted to certain families of instances.

From a result derived by Colbourn (Colbourn 1984), one can show that the completion

problem of the SGP, i.e., deciding whether a partially filled schedule can be completed

to conflict-free one, is NP-complete.

In general, the task of finding w mutually orthogonal Latin squares (MOLS) of

order q is equivalent to solving the SGP instance q−q−(w + 2) (Anderson, 1997).

MOLS play an important rôle in the design of statistical experiments, coding theory and

cryptography, and several (in)existence results and construction methods for specific

instances are known from design theory. Harvey and Winterer have compared and

successfully applied several of these interesting techniques to the SGP (Harvey and

Winterer 2005).

Metaheuristic approaches towards the SGP include local search with tabu-lists (Dotú

and Hentenryck 2005), and an evolutionary approach (Cotta et al. 2006).



3

3 The SAT formulation by Gent and Lynce

Consider the general g−p−w instance of the SGP, with x = g × p the number of

golfers. For their SAT formulation (Gent and Lynce 2005), Gent and Lynce introduce

variables Gijkl (1 ≤ i ≤ x, 1 ≤ j ≤ p, 1 ≤ k ≤ g and 1 ≤ l ≤ w) denoting whether

player i plays in position j in group k and week l. The constraints are then imposed

by a set of clauses ensuring that:

– Each player plays exactly once per week, i.e.:

– Each player plays at least once per week

– Each player plays at most once per week

– Each group consists of exactly p players, i.e.:

– At least one player is the jth golfer (1 ≤ j ≤ p)

– At most one player is the jth golfer (1 ≤ j ≤ p)

– No two players play in the same group more than once

The following clauses ensure that each player plays at least once in each week:

x
∧

i=1

w
∧

l=1

p
∨

j=1

g
∨

k=1

Gijkl (1)

To enforce that each player plays at most once each week, it is first ensured that

each player plays at most once per group in each week:

x
∧

i=1

w
∧

l=1

p
∧

j=1

g
∧

k=1

p
∧

m=j+1

¬Gijkl ∨ ¬Gimkl (2)

A second set of clauses is supposed to guarantee that no player plays in more than

one group in any week:

x
∧

i=1

w
∧

l=1

p
∧

j=1

g
∧

k=1

g
∧

m=k+1

p
∧

n=j+1

¬Gijkl ∨ ¬Ginml (3)

However, clause set (3) as proposed is incomplete, and we return to it below. Taking

our modification below into account, the clause set (1) ∪ (2) ∪ (3) enforces that each

player plays exactly once per week.

A similar set of clauses is introduced for groups of golfers:

w
∧

l=1

g
∧

k=1

p
∧

j=1

x
∨

i=1

Gijkl (4)

w
∧

l=1

g
∧

k=1

p
∧

j=1

x
∧

i=1

x
∧

m=i+1

¬Gijkl ∨ ¬Gimkl (5)

The set (4) ∪ (5) is intended to yield valid groups, i.e., groups where exactly one

player is in position j for each 1 ≤ j ≤ p. We will return to this clause set below as

well.

The only constraint left to encode is “socialisation”, i.e., no two players can play in

the same group more than once. To express this constraint, Gent and Lynce introduce

a set of auxiliary variables and a so-called ladder matrix. The auxiliary variables G′

ikl



4

1.1 1.2 2.1 2.2 3.1 3.2
3.4 T T F F F F
2.3 T T T T T T

2.4 T T T T F F
1.2 T F F F F F
1.3 T T T F F F
1.4 T T T T T F

Fig. 1 Ladder matrix for the schedule of Fig. 2

Group 1

Group 2

Week 1 Week 2 Week 3

1 2

3 4

1 3

2 4

1 4

2 3

Fig. 2 Schedule corresponding to the ladder matrix of Fig. 1

(1 ≤ i ≤ x, 1 ≤ k ≤ g and 1 ≤ l ≤ w) denote whether player i plays in group k and

week l. They are related to the variables Gijkl via the equivalence:

G
′

ikl ↔

p
∨

j=1

Gijkl (6)

posted for all 1 ≤ i ≤ x, 1 ≤ k ≤ g and 1 ≤ l ≤ w.

The ladder matrix is a
(

x
2

)

× (g × w) roster of propositional variables denoted

by Ladderyz . A complete assignment of the ladder variables is said to be valid iff

every row is a sequence of zero or more True assignments followed by only False

assignments. To enforce this, Gent and Lynce propose the set of clauses:

(x
2
)−1
∧

y=1

g×w
∧

z=1

¬Ladderyz+1 ∨ Ladderyz (7)

We will return to this clause set below. For now, we illustrate the intention of the

ladder matrix with an example given in Fig. 1. It is taken from (Gent and Lynce 2005)

and corresponds to the schedule shown in Fig. 2. Each row of the matrix corresponds to

a pair of golfers. In each row, the column of the rightmost True value, if any, denotes

the group in which the respective two golfers play together. We highlight the rightmost

True value of each row using a bold T. Obviously, at most one True assignment can

be the rightmost one in each row. Therefore, each pair of players can occur in at most

one group.

The remaining sets of clauses relate the auxiliary variables G
′

ikl with the ladder

variables. If two golfers i and m play in the same group, i.e., G′

ikl ∧ G
′

mkl is true for

i < m, then, according to Gent and Lynce, Ladder
[(x−i

2
)+m−i](l×k)

must be True

and Ladder
[(x−i

2
)+m−i](l×k+1)

must be False, and conversely. Formally, they propose

the following sets of clauses:

w
∧

l=1

g
∧

k=1

x−1
∧

i=1

x
∧

m=i+1

¬G
′

ikl ∨ ¬G
′

mkl ∨ Ladder(x−i

2
)+m−i,l×k

(8)

w
∧

l=1

g
∧

k=1

x−1
∧

i=1

x
∧

m=i+1

¬G
′

ikl ∨ ¬G
′

mkl ∨ ¬Ladder(x−i

2
)+m−i,l×k+1

(9)



5

w
∧

l=1

g
∧

k=1

x−1
∧

i=1

x
∧

m=i+1

Ladder(x−i

2
)+m−i,l×k+1

∨ ¬Ladder(x−i

2
)+m−i,l×k

∨ ¬G
′

ikl (10)

w
∧

l=1

g
∧

k=1

x−1
∧

i=1

x
∧

m=i+1

Ladder(x−i

2
)+m−i,l×k+1

∨ ¬Ladder(x−i

2
)+m−i,l×k

∨ ¬G
′

mkl (11)

We discuss these clauses in the next section.

4 Revisiting the SAT formulation by Gent and Lynce

In this section, we revisit the SAT formulation as proposed by Gent and Lynce and

correct some of its clauses, to enforce all desired constraints and thus correctly model

SGP instances as SAT instances.

Clauses (1) and (2) of the SAT formulation by Gent and Lynce are correct. Clause

set (3) is incomplete: n must range from 1 to p, instead of from j + 1 to p. This is

because a player that plays in week l at position j of group k must not play in any

other position for further groups of that week l, not just positions greater than j. The

correct encoding is thus:

x
∧

i=1

w
∧

l=1

p
∧

j=1

g
∧

k=1

g
∧

m=k+1

p
∧

n=1

¬Gijkl ∨ ¬Ginml (12)

Clause set (5) is slightly inaccurate: Gimkl must be changed to Gmjkl to enforce

the correct constraint, yielding:

w
∧

l=1

g
∧

k=1

p
∧

j=1

x
∧

i=1

x
∧

m=i+1

¬Gijkl ∨ ¬Gmjkl (13)

This is because the other order of these indices would not match the intended usage

of these variables.

Clause set (7) is also slightly inaccurate: y must range from 1 to
(

x
2

)

. This is because

the constraint must hold for all pairs of players, not just every one except the last one,

and yields:

(x
2
)

∧

y=1

g×w
∧

z=1

¬Ladderyz+1 ∨ Ladderyz (14)

It also becomes clear from this clause set that the ladder matrix is in fact a
(

x
2

)

×

(g × w + 1) matrix.

Further, it is easy to see that in the clauses of (10), ¬G′

ikl must be replaced by

its negation, G′

ikl. Similarly, ¬G′

mkl must be replaced by its negation in the clauses

of (11), yielding:

w
∧

l=1

g
∧

k=1

x−1
∧

i=1

x
∧

m=i+1

Ladder(x−i

2
)+m−i,l×k+1

∨ ¬Ladder(x−i

2
)+m−i,l×k

∨G
′

ikl (15)



6

Group 1

Group 2

Group 3

Group 4

Group 5

Group 6

Group 7

Group 8

Week 1 Week 2

32 24 16 8

31 23 15 7

30 22 14 6

29 21 13 5

28 20 12 4

27 19 11 3

26 18 10 2

25 17 9 1

31 23 15 7

29 21 13 5

27 19 11 3

25 17 9 1

26 22 16 12

30 18 8 4

32 28 14 10

24 20 6 2

Fig. 3 A “solution” for the 8−4−2 instance, conflicts highlighted

w
∧

l=1

g
∧

k=1

x−1
∧

i=1

x
∧

m=i+1

Ladder(x−i

2
)+m−i,l×k+1

∨ ¬Ladder(x−i

2
)+m−i,l×k

∨G
′

mkl (16)

This is due to the intention that if adjacent cells of the ladder matrix are True

and False in some row, the two players corresponding to that row should play together.

However, this is not all that needs to be changed to correctly model the SGP.

Consider the “solution” of the SGP instance 8−4−2 shown in Fig. 3, in which conflict

positions are highlighted. The configuration satisfies all constraints corrected so far,

yet still contains conflicts.

The location of conflict positions in Fig. 3 can give valuable indications as to where

the model went wrong. In this case, we expect the encoding of socialisation to be

wrong, since all other constraints are satisfied: Each player plays exactly once each

week, and all groups have the correct size. The interesting pattern of conflict positions

is due to the following problem in the model: In clause sets (8)–(11), columns of the

ladder matrix are referenced by the terms (l × k) and (l × k + 1), with 1 ≤ l ≤ w

and 1 ≤ k ≤ g. Clearly, each group should be assigned a distinct column in the ladder

matrix, but the way in which the running variables are combined to form a column

index does not guarantee that. For example, both the second group of the first week,

and the first group of the second week will evaluate to column 1 × 2 = 2 × 1 = 2 of

the ladder matrix. As a consequence, the relevant constraints are not imposed on all

groups.

To remedy this, we propose that the column index of group k in week l be uniquely

determined by the expression (l− 1)× g+ k. This yields the following revised versions

of clause sets (8)–(11):

w
∧

l=1

g
∧

k=1

x−1
∧

i=1

x
∧

m=i+1

¬G
′

ikl ∨ ¬G
′

mkl ∨ Ladder(x−i

2
)+m−i,(l−1)×g+k

(17)

w
∧

l=1

g
∧

k=1

x−1
∧

i=1

x
∧

m=i+1

¬G
′

ikl ∨ ¬G
′

mkl ∨ ¬Ladder(x−i

2
)+m−i,(l−1)×g+k+1

(18)

w
∧

l=1

g
∧

k=1

x−1
∧

i=1

x
∧

m=i+1

Ladder(x−i

2
)+m−i,(l−1)×g+k+1

∨ ¬Ladder(x−i

2
)+m−i,(l−1)×g+k

∨G
′

ikl (19)



7

w
∧

l=1

g
∧

k=1

x−1
∧

i=1

x
∧

m=i+1

Ladder(x−i

2
)+m−i,(l−1)×g+k+1

∨ ¬Ladder(x−i

2
)+m−i,(l−1)×g+k

∨G
′

mkl (20)

This completes the corrected formulation.

5 Improving the SAT formulation by Gent and Lynce

Having presented a correct SAT formulation for the SGP, we now look for ways to

reduce computation time when solving SGP instances in practice. There are various

ways to do this, for example

– reduce the number of variables

This reduces the number of possible assignments and thus leads to a smaller search

space.

– reduce the number of clauses

Fewer clauses means fewer constraints that need to be satisfied, in effect turning

more assignments into satisfying ones.

– impose symmetry breaking constraints

This removes uninteresting solutions and can help a SAT solver to focus on more

interesting parts of the search space.

We consider symmetry breaking constraints in section 7, and focus for now on the

first two options.

Our first observation regards the number of clauses: The revised versions of clause

sets (10) and (11), namely (19) and (20), are actually not necessary: They can be

omitted from the model without affecting the correctness of the formulation. The sole

purpose of the ladder matrix is to reflect the fact that two players play in the same

group. This means that if two players play in the same group, we want the ladder

matrix to reflect that. If, on the other hand, a True and False value in the ladder

matrix are adjacent, then the corresponding players need not necessarily play together

in that group. This is due to the fact that our focus is on the players, and the ladder

matrix is only an auxiliary device that we use for the specific purpose of enforcing

the socialisation constraint. Other than that, the ladder matrix is of no interest, and

remaining cells can assume any values. Reducing the number of clauses in this way can

result in significantly less computation time.

However, one can go even further, and we now reduce the number of variables for

each instance by eliminating the ladder matrix entirely. Instead of equations (7)–(11),

we propose a different way to encode the desired socialisation constraint that lies at

the core of the SGP. The set of clauses we propose can be concisely described as:

w
∧

l=1

g
∧

k=1

x
∧

m=1

x
∧

n=m+1

g
∧

k′=1

w
∧

l′=l+1

(¬G′

mkl ∨ ¬G
′

nkl) ∨ (¬G′

mk′l′ ∨ ¬G
′

nk′l′) (21)

This states the socialisation constraint in a very straight-forward manner: If two

players m and n play in the same group k of a week l, then they cannot play together

in any group of further weeks.



8

This change of the formulation makes all Ladderxy variables unnecessary. For

each SGP instance g−p−w, our formulation will therefore always have exactly
(

g×p
2

)

×

(g × w + 1) fewer variables (i.e., exactly the number of ladder variables) than the

formulation proposed by Gent and Lynce. The number of clauses can be less, equal, or

more depending on the instance. In the next section, we assess empirically what can

be gained by our change of the formulation.

6 Experimental results

We chose the two well-known instances 5−3−w and 8−4−w for benchmarking, which

we consider quite representative for other instances as well.

All experiments were conducted on an Apple MacBook with a 2.16 GHz Intel Core 2

Duo CPU and 1GB RAM. We used the two SAT solvers Walksat (Selman et al. 1993)

(version 4.6) and SATO (Zhang 1997) (version 4.2). Walksat uses local search, and

SATO uses the Davis-Putnam method. For SATO, we started the solver and waited

with a timeout of 20 minutes. For Walksat, we tried many options and chose the cutoff

in such a way that the program had about 20 minutes to solve an instance. This is a

reasonable time frame to be competitive, as this is also the limit that was chosen in

recently reported other approaches with similar hardware (Cotta et al. 2006).

Tables 1 and 2 show benchmark results with the (revised) SAT formulation by

Gent and Lynce and our formulation, respectively. For each SGP instance, we show

the number of variables and clauses of the generated SAT instance. The “Walksat”

column shows the average number of seconds until a satisfying assignment was found

in 10 tries. The “SATO” column shows the number of seconds until a single solution was

found, averaged over 10 runs to reduce variance of measured run times. The symbol “–”

means that no solution was found within the time limit.

Despite trying many different options with Walksat, we did not find many solutions

using the (revised) formulation by Gent and Lynce. In contrast, we could solve all given

instances with Walksat’s “novelty” option and a cutoff parameter of 107 by using our

formulation.

It is clear from these figures that our changes to the SAT formulation can result

in large performance improvements when solving SGP instances in practice with this

method. A SAT-based approach towards the SGP thus seems now at least more promis-

ing than previously, when results were much further from being competitive with other

approaches.

7 Symmetry breaking

Another strategy that can reduce computation time when solving SAT instances in

practice is to eliminate uninteresting branches of the search tree by breaking some

of the symmetries inherent to the underlying problem. Clearly, the SGP is a highly

symmetric problem: Players within groups, groups within weeks, and weeks themselves

can be reordered arbitrarily. Yet, schedules with different orders of players within the

same group lead to distinct solutions in the SAT formulation above. Especially when

using SAT solvers that use a complete backtracking algorithm, it can help to eliminate

these symmetries and thus force the solver away from regions of the search space that



9

Table 1 Revised formulation by Gent and Lynce

instance #Vs. #Cl. Walksat SATO
5−3−1 930 6105 0.00s 0.01s
5−3−2 1755 12210 0.02s 0.02s
5−3−3 2580 18315 – –
5−3−4 3405 24420 – –
5−3−5 4230 30525 – –
5−3−6 5055 36630 – –
8−4−1 5744 52928 – 0.06s
8−4−2 10992 105856 – 0.11s
8−4−3 16240 158784 – –
8−4−4 21488 211712 – –
8−4−5 26736 264640 – –
8−4−6 31984 317568 – –

Table 2 Our formulation

instance #Vs. #Cl. Walksat SATO
5−3−1 300 3480 0.00s 0.12s
5−3−2 600 9585 0.00s 0.01s
5−3−3 900 18315 0.00s 0.01s
5−3−4 1200 29670 0.01s 0.03s
5−3−5 1500 43650 2.42s 0.04s
5−3−6 1800 60255 98.94s –
8−4−1 1280 33088 0.00s 0.03s
8−4−2 2560 97920 0.01s 0.10s
8−4−3 3840 194496 0.05s 1.16s
8−4−4 5120 322816 0.75s –
8−4−5 6400 482880 0.98s –
8−4−6 7680 674688 198.92s –

have already been considered in some variant. Gent and Lynce propose the following

set of clauses to break the symmetry among players within each group:

x
∧

i=1

p
∧

j=1

g
∧

k=1

w
∧

l=1

i−1
∧

m=1

¬Gijkl ∨ ¬Gm(j+1)kl (22)

Clearly, j must in fact range from 1 to p − 1. Also, since the players within each

week must be distinct, m can range from 1 to i. With these modifications, the clause

set (22) ensures that the players within each group are in strictly increasing numerical

order.

All groups within a single week can be ordered by their first players, for which Gent

and Lynce propose the set of clauses:

x
∧

i=1

g
∧

k=1

w
∧

l=1

i−1
∧

m=1

¬Gi1kl ∨ ¬Gm1(k+1)l (23)

Again, k must actually range from 1 to g − 1. From (22) and (23), it follows that

player 1 is the first player of the first group in each week. Using this fact, weeks can be

ordered lexicographically by the second golfer playing in the first group of each week.

Gent and Lynce propose the set of clauses:



10

x
∧

i=1

g
∧

k=1

w
∧

l=1

i−1
∧

m=1

¬Gi2kl ∨ ¬Gm2k(l+1) (24)

Again, l must actually range from 1 to w − 1. Also, this set of clauses removes

more solutions than intended, as it erroneously enforces the constraint for each group,

instead of only the first group of each week. In addition, we know that the second

player in the first group must be distinct for each week, since player 1 also plays in

this week, and players cannot meet more than once. We can therefore demand strictly

ascending second players in the first group of each week, by using instead the following

set of clauses:

x
∧

i=1

w−1
∧

l=1

i
∧

m=1

¬Gi21l ∨ ¬Gm21(l+1) (25)

This completes the symmetry breaking constraints.

8 Experimental results again

It is well-known that symmetry breaking constraints can make it harder for local search

methods to find solutions (Prestwich 2001), as they reduce the number of solutions and

thus the solution density. In contrast, solution methods that involve backtracking search

can greatly benefit from symmetry breaking constraints, and we thus expect a positive

impact when using these constraints together with the SATO solver.

We added the three symmetry breaking constraints of section 7 to the model we

propose in section 5, in the hope to further reduce computation time and solve SGP

instances that we previously could not solve within the time limit.

Table 3 shows our results for those instances that could not be solved previously. As

can be seen, these results largely confirm our expectation: Adding symmetry breaking

clauses has a very positive effect for the backtracking solver SATO, with which we can

now solve many more instances. Kirkman’s schoolgirl problem, instance 5−3−7, can

now be solved, and the original SGP can be solved for up to 7 weeks.

When trying to solve instance 5−3−7 with all symmetry breaking constraints,

SATO exited with the message “Bus error”. Running SATO in the debugger GDB

(version 6.3.50) showed a memory access error in the procedure clean tapes for this

instance. We then removed the last two constraints, and broke only the symmetry

arising from different player orders within groups to solve this instance. All other

instances could be solved with all three symmetry breaking constraints.

As expected, adding symmetry breaking constraints has very adverse effects for

Walksat, which is based on local search. None of the instances could be solved within the

time limit, not even 5−3−6, which could be solved before adding symmetry breaking

clauses.

9 More symmetry breaking

The symmetry breaking constraints of section 7 do not break all symmetries of so-

lutions: In addition to the mentioned symmetries, players can be renumbered arbi-

trarily. Thus, different permutations can still yield distinct but isomorphic solutions.

See (Barnier and Brisset 2005) for an example.



11

Table 3 Our formulation, including symmetry breaking constraints

instance #Vs. #Cl. Walksat SATO
5−3−6 1800 67455 – 1.98s
5−3−7 2100 91965 – 3m5.79s
8−4−4 5120 389872 – 1.58s
8−4−5 6400 566832 – 3.64s
8−4−6 7680 775536 – 12.83s
8−4−7 8690 1015984 – 4m3.85s

In (Frisch et al. 2002), a very different model for the SGP is proposed, which allows

to break much of this symmetry: Let Mw×g,g×p denote a matrix of Boolean variables.

Each column corresponds to a player, and each row corresponds to one group. The

Boolean value at position (i, j) denotes whether player j plays in group i. The neces-

sary constraints on M are quite obvious. Much of the symmetry arising from player

permutations can now be broken by imposing a lexicographic “less than” constraint on

columns. Similarly, the symmetry among groups can be broken by imposing a lexico-

graphic “less than” constraint on the rows corresponding to the groups of each week.

Unfortunately, this still does not remove all isomorphic solutions: As shown in (Flener

et al. 2002), lexicographically ordering both rows and columns does not break all com-

positions of rows and column symmetries. As this model was also shown to suffer from

overheads due to large arising vectors (Frisch et al. 2002), we do not consider it further.

It is always possible to break all symmetries of a problem with lexicographic con-

straints (Crawford et al. 1996). However, since a super-exponential number of con-

straints are necessary in general, this is often infeasible in practice.

10 Comparison with other approaches

Working with SAT formulations can be quite error-prone, but there are also several

benefits of SAT-based approaches for the SGP over other methods. For example, in the

case of constraint based formulations, there is no commonly used modeling language

that all solvers understand, and it is thus harder to run the same formulation with

different constraint solvers. In contrast, the DIMACS format is widely understood by all

common SAT solvers, and one can easily apply different SAT solvers and methodologies

to the same model.

Existing metaheuristic methods for the SGP (Cotta et al. 2006; Dotú and Hen-

tenryck 2005), are quite simple and perform surprisingly well on many instances, but

they are typically incomplete and can therefore not be used to show that an instance

cannot be solved. With complete SAT solvers, on the other hand, this is possible, and

SAT solvers employing local search can still be used with the same model.

Although all instances of the SGP that we could so far solve with SAT solvers are

also solvable with other known methods, we therefore consider it worthwhile to try

different SAT models and solvers in the future.

11 Conclusion and Future Work

We revisited an existing SAT encoding of the SGP and revised some of its clauses. We

then proposed an alternative encoding of the socialisation constraint which forms the



12

core of the SGP and related problems. Our formulation always results in fewer vari-

ables, while the number of clauses can be smaller or larger depending on the instance.

Our formulation can lead to considerably improved running times when solving SGP

instances with common SAT solvers.

The existence of freely available and continuously evolving SAT solvers makes it

attractive to try out SAT formulations for scheduling problems such as the SGP, and

several interesting questions and opportunities for future research present themselves:

First, there is hope that still better problem formulations or symmetry breaking con-

straints exist, which could result in increased performance.

Second, the SAT formulation itself could lead to new insights into the SGP due

to its simplicity. By analyzing SAT encodings of SGP instances that are known to be

unsolvable, one could arrive at better bounds and hardness estimates of other instances,

about which only very little is known so far.

Finally, adding implied constraints to the model could further reduce computation

time.

References

Anderson, I. (1997). Combinatorial designs and tournaments. Oxford Clarendon Press.

Barnier, N. and Brisset, P. (2005). Solving Kirkman’s schoolgirl problem in a few

seconds. Constraints, 10(1):7–21.

Colbourn, C. H. and Dinitz, J. H. (1996). The CRC Handbook of Combinatorial De-

signs. CRC Press.

Colbourn, C. J. (1984). The complexity of completing partial latin squares. Discrete

Appl. Math., 8:25–30.

Cotta, C., Dotú, I., Fernández, A. J., and Hentenryck, P. V. (2006). Scheduling social

golfers with memetic evolutionary programming. In Hybrid Metaheuristics, volume

4030 of LNCS, pages 150–161.

Crawford, J. M., Ginsberg, M. L., Luks, E. M., and Roy, A. (1996). Symmetry-breaking

predicates for search problems. In KR, pages 148–159.

Dotú, I. and Hentenryck, P. V. (2005). Scheduling social golfers locally. In CPAIOR,

volume 3524 of LNCS, pages 155–167.

Flener, P., Frisch, A. M., Hnich, B., Kiziltan, Z., Miguel, I., Pearson, J., and Walsh, T.

(2002). Breaking row and column symmetries in matrix models. In CP’02, volume

2470 of LNCS.

Frisch, A., Hnich, B., Kiziltan, Z., Miguel, I., and Walsh, T. (2002). Global constraints

for lexicographic orderings. In CP’02, volume 2470 of LNCS.

Gent, I. and Lynce, I. (2005). A SAT encoding for the social golfer problem. IJCAI’05

Workshop on Modelling and Solving Problems with Constraints.

Gent, I. P. and Walsh, T. (1999). CSPLib: A benchmark library for constraints. In

CP’99, volume 1713 of LNCS.

Harvey, W. and Winterer, T. (2005). Solving the MOLR and social golfers problems.

In CP’05, volume 3709 of LNCS, pages 286–300.

Petrie, K. E. and Smith, B. (2004). Dynamic symmetry breaking in constraint pro-

gramming and linear programming. Technical report.

Prestwich, S. (2001). First-solution search with symmetry breaking and implied con-

straints. In Proceedings of the CP’01 Workshop on Modelling and Problem Formu-

lation.



13

Selman, B., Kautz, H., and Cohen, B. (1993). Local search strategies for satisfiability

testing. Second DIMACS Implementation Challenge.

Zhang, H. (1997). SATO: An efficient propositional prover. In CADE, volume 1249 of

LNAI.


