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Abstract The Social Golfer Problem (SGP) is a combinatorial optimization prob-

lem that exhibits a lot of symmetry and has recently attracted significant attention.

In this paper, we present a new greedy heuristic for the SGP, based on the intuitive

concept of freedom among players. We use this heuristic in a complete backtracking

search, and match the best current results of constraint solvers for several SGP in-

stances with a much simpler method. We then use the main idea of the heuristic to

construct initial configurations for a metaheuristic approach, and show that this signif-

icantly improves results obtained by local search alone. In particular, our method is the

first metaheuristic technique that can solve the original problem instance optimally.

We show that our approach is also highly competitive with other metaheuristic and

constraint-based methods on many other benchmark instances from the literature.

Keywords sports scheduling · combinatorial optimization · design theory · finite

geometry

1 Introduction

The Social Golfer Problem (SGP) is a combinatorial optimization problem derived

from a question that was posted to sci.op-research in May 1998:
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32 golfers play golf once a week, and always in groups of 4. For how many

weeks can they play such that no two players play together more than once in

the same group?

The problem is readily generalized to the following decision problem: Is it possible

to schedule n = g×p golfers in g groups of p players for w weeks such that no two golfers

play in the same group more than once? An instance of the SGP is then denoted by

a triple g−p−w of natural numbers. In practice, one is interested in the corresponding

optimization problem that asks for the maximum number w∗ of weeks that admits a

solution for given g and p, since such a solution also implies solutions for all instances

g−p−w with w ≤ w∗.

Clearly, not all combinations of parameters admit a solution, and upper bounds are

easy to determine. For example, in the original problem, 8−4−w, w can be no more

than 10: Suppose w ≥ 11, and observe the schedule of an arbitrary but fixed player α:

Each week, α plays in a group with 3 (distinct) other players. To play 11 weeks, α

would have to partner 3 · 11 > 32 players.

The SGP exhibits many symmetries: Weeks, groups within weeks, and players

within groups, can all be ordered arbitrarily. In addition, players can be assigned ar-

bitrary names. Due to its highly constrained and symmetric nature, the SGP has at-

tracted much attention from the constraint programming community and has led to the

development of powerful but complex dynamic symmetry breaking schemes (Barnier

and Brisset 2005; Petrie et al. 2004). The SGP is included as problem number 10 in

CSPLib, a benchmark library for constraints (Gent and Walsh 1999). No constraint

solver or metaheuristic approach was so far able to solve the 8−4−10 instance, although

a solution is known to exist. In addition to being a hard and interesting benchmark

for constraint solvers, the SGP and closely related problems arise in many practical

applications such as encoding, encryption and covering problems (Douglas R. Stinson

1994; Gordon et al. 1995; Hsiao et al. 1970).

2 Related Work

Research on a problem that is very closely related to the SGP actually dates back

to Euler, who considered an instance of the SGP in a different context: Euler asked

whether two orthogonal Latin squares of order 6 exist, which has become known as

“Euler’s Officer Problem” (Colbourn and Dinitz 1996). In terms of the SGP, this cor-

responds to solving the 6−6−4 instance, which is now known to be impossible. As

another special case of the SGP, the 5−3−7 instance also has a long history and is

known as Kirkman’s schoolgirl problem (Barnier and Brisset 2005).

In general, the task of finding w mutually orthogonal Latin squares (MOLS) of

order q is equivalent to solving the SGP instance q−q−(w + 2). MOLS play an im-

portant rôle in the design of statistical experiments, coding theory and cryptography,

and several (in)existence results and construction methods for specific instances are

known from design theory, a branch of discrete mathematics. Harvey and Winterer have

compared and successfully applied several of these interesting techniques to the SGP

(Harvey and Winterer 2005).

The computational complexity of the SGP is currently unknown. Some instances

are easily solved using construction methods from design theory, but such methods are

typically restricted to certain families of instances. However, from a result derived by
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Colbourn (Colbourn 1984), one can show that the completion problem of the SGP, i.e.,

deciding whether a partially filled schedule can be completed to conflict-free one, is

NP-complete.

Metaheuristic approaches towards the SGP include local search with tabu-lists

(Dotú and Hentenryck 2005) and an evolutionary approach (Cotta et al. 2006). Dotú

and Hentenryck also use a constructive heuristic, but instead of a greedy heuristic, they

use a deterministic construction method from design theory that is known to trivially

solve instances of the form p−p−(p + 1) when p is prime. However, the construction

method is not easy to randomize meaningfully.

Other approaches include a SAT encoding (Gent and Lynce 2005, Triska and Musliu

2010), which so far is not competitive with other methods, and various constraint-based

formulations including sophisticated dynamic symmetry breaking techniques (Barnier

and Brisset 2005; Fahle et al. 2001).

For the original instance, state-of-the-art constraint solvers can currently generate

solutions for no more than 9 weeks, using either set-based formulations or by post-

ing more constraints than strictly necessary to break symmetries. Whether there is a

solution for 10 weeks was an open question that was answered – six years after the

problem was posed – in the affirmative by Aguado (Aguado 2004) who constructed

an explicit solution based on a result by Colbourn (Colbourn 1999), derived using a

combination of design-theoretic techniques, backtracking search and instance-specific

considerations. Unfortunately, his approach does not generalize to other instances.

3 Modeling the SGP

Assuming the correct group sizes, there are essentially only two constraints in the SGP:

1. Each player plays exactly once each week.

2. Each pair of golfers can play in the same group at most once.

These constraints can be enforced using many different formulations of the problem,

which is one of the reasons it is so interesting. On the most abstract level, all constraints

can be expressed using a set-based formulation, in which the sets Gij denote groups

of golfers that play in week i. The constraints are then as follows, written as first-

order formulae in the language of set theory, with the players being represented by the

numbers 1, . . . , n:

Gij ⊆ {1, . . . , n} ∧ |Gij | = p for all 1 ≤ i ≤ w, 1 ≤ j ≤ g (1)

⋃

1≤j≤g

Gij = {1, . . . , n} for all 1 ≤ i ≤ w (2)

|Gij ∩ Gi′j′ | ≤ 1 for all 1 ≤ i < i′ ≤ w, 1 ≤ j, j′ ≤ g (3)

In most actual implementations, the abstract concept of sets is simulated by the use

of variables Gijk, 1 ≤ Gijk ≤ n, that denote which player plays in week i, group j and

position k. The constraints are then either expressed using built-in primitives provided

by solvers or encoded manually. This is also the model we chose. We call the set of

variables Gijk and their respective values v(Gijk) a configuration. There are several

interesting observations to be made about this model:
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– The model admits many identical solutions due to its inherent symmetries. For

example, the order of groups or of players within groups does not distinguish actual

solutions, but leads to distinct solutions in this model.

– Most of the symmetries can in fact be removed by imposing additional requirements

on solutions. For example, players within groups could be required to occur in

ascending order (Barnier and Brisset 2005).

– There is one kind of symmetry that cannot be removed statically in this formula-

tion: Players can be renumbered arbitrarily.

– While removing symmetries can dramatically reduce computation time in constraint-

based approaches, it can make metaheuristic approaches significantly slower, since

it actually removes solutions. Therefore, we do not break any symmetries in our

approach, which also has a local search component.

We remark that this is not the only sensible way to encode the problem, and in fact

there is a model that allows to statically break the symmetry arising from player per-

mutations: Let M(w·g),n denote a Boolean (w ·g)×n matrix. Each column corresponds

to a player, and each row corresponds to one group. The Boolean value at position (i, j)

denotes whether player j plays in group i. The necessary constraints on M are quite

obvious. The symmetry arising from player permutations can now be broken by impos-

ing a lexicographic “less than” constraint on columns. Similarly, the symmetry among

groups can be broken by imposing a lexicographic “less than” constraint on the rows

corresponding to the groups of each week. However, a drawback of this model is that

it uses g times more variables than the model we use, which we also consider more

natural.

4 Freedom of Sets of Players

We now introduce the concept of freedom of sets of players. Let C be a partial con-

figuration. For an arbitrary player x, we denote with PC(x) the potential partner-set

of x with respect to C, i.e., the set of players that x can still partner in any group,

assuming C as given. In other words, PC(x) is the set of all players, minus the players

that x has already partnered in any group of C. For any set S of players, we denote

with ϕC(S) the freedom of S with respect to C, and define it as the cardinality of the

intersection of the potential partner-sets of all players in S, i.e.:

ϕC(S) =

∣

∣

∣

∣

∣

⋂

x∈S

PC(x)

∣

∣

∣

∣

∣

(4)

Informally, the freedom of a set of players denotes how many players they can

still “partner together”. As an example, consider the configuration C of Fig. 1, where

players 0 and 31 are highlighted in each week. These two players partner complementary

subsets of remaining players, and the freedom of the player set {0, 31} is:

ϕC({0, 31}) = |{16, . . . , 31} ∩ {0, . . . , 15}| = |∅| = 0

As a consequence, if we wanted to extend the schedule by another week, we know

that player 0 and 31 cannot occur together in the same group, because there is no

other player that can still play with both of them. In fact, the freedom of all pairs of

players that have not yet played together in any group in C is 0, and this configuration
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Fig. 1 A solution for the 8−4−5 instance, with players 0 and 31 highlighted in each week

can therefore not even be extended by a single further group if the shown weeks are

considered fixed.

In the following, we describe how to use this measure to improve two different

methods: Complete backtracking and local search.

5 A Greedy Heuristic for Complete Backtracking

We now describe a greedy heuristic that can be used to guide a complete backtracking

search for the SGP.

Let us first suppose that p is even. Then the task of scheduling the players into

groups in each week can also be seen as scheduling pairs of players into groups. Thus,

we visit the weeks one after another, and in each week, we traverse the groups in their

natural order. For each pair of adjacent positions in a group, we need to select a pair of

players still remaining to be scheduled in the current week. Here, we use the degree of

freedom to guide the selection, and select a pair having minimal freedom with respect

to the current partial configuration. The intention behind this choice is that if a pair

of players is close to running out of potential partners, then they should be scheduled

in the same group while that is still possible at all. This reasoning is analogous to the

well-known labeling strategy “first-fail” in constraint satisfaction problems.

If a group is encountered that cannot be completed, or a conflict is found, back-

tracking occurs: We undo the most recent choice of players, and select a pair with next

larger degree of freedom instead.

If p is odd, there are several options. A simple solution is to schedule pairs of players

for each group as far as possible, and then to fill the remaining position with any player

that is compatible with all other players scheduled in this group.

Another approach is to generalise the heuristic to triples and larger sets of players.

Here, a trade-off must be reached between accurate assessment of a scheduling choice

and computational tractability.

We have implemented the described backtracking method in such a way that a

pattern can be specified to denote in which way each individual group is considered.

For example, the pattern 3-2-2-1 can be applied to g−8−w instances and means that

for each group, we proceed as follows: First a triple of players with minimal freedom is

scheduled; on the remaining places, two pairs are placed next (each chosen according

to minimal freedom), and any player that can still play with all others in this group is

put in the final position.

Table 1 shows results for selected instances and patterns with this method, tested

on an Apple MacBook with a 2.16 GHz Intel Core 2 Duo CPU and 1GB RAM, using a
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Table 1 Complete backtracking with greedy heuristic on selected instances

instance pattern time instance pattern time
5−3−7 3 0.51s 6−6−3 3-3 0.29s
8−4−9 2-2 0.08s 6−6−3 4-2 1.54s
8−4−9 4 1.58s 9−9−3 3-3-3 14.4s

Prolog implementation of the algorithm. We benefit from arbitrary precision arithmetic

to represent sets of players as bit vectors. This lets us efficiently intersect sets by using

fast bitwise operations. Determining a set’s cardinality is thus also very efficient. For

each instance, we match the best number of weeks of current constraint solvers (Harvey

2002). In particular, we solve Kirkman’s schoolgirl problem optimally, and we solve the

original SGP for 9 weeks with pattern 2-2 (i.e., two pairs) and 4 (i.e., by considering

quadruples).

During the search, the freedom of remaining sets of players could be used to prune

the search earlier. We have implemented this idea and found that it did not in itself

lead to new solutions to open instances. However, as we show in the next section, it

can be useful to obtain greedily constructed configurations that still contain conflicts,

and for them early backtracking is not even necessary.

6 Randomized Greedy Initial Configurations for Local Search

We now use the main idea of our greedy heuristic to generate good initial configurations

for a local-search approach. For reasons that will become clear below, the dual of

the previous heuristic is beneficial in this case. In addition, we add a randomization

component that lets us add slight perturbations to initial configurations. First, we

describe the modified heuristic.

To produce an initial configuration, the heuristic visits the weeks one after another.

A single week is produced as follows: The week’s groups are traversed one after another.

As before, for each pair of adjacent positions in a group, the heuristic needs to select

a pair of players still remaining to be scheduled in the current week. Now, it selects

the pair having maximal freedom with respect to the current partial configuration.

In addition, there is a parameter γ, with 0 ≤ γ ≤ 1, that can be used to randomize

the heuristic: In the case of ties, a random choice is made among the pairs of players

having maximal freedom with probability γ. With probability 1−γ, pairs are regarded

as ordered, with the numerically smaller player first, and the lexicographically smallest

pair is selected. After a pair of players was selected and is placed into a group, a

large number is subtracted as a penalty from that pair’s freedom in further weeks, to

discourage that pair from being selected again in a different group. Other than that,

the heuristic pays no attention to potential conflicts in a group, and never undoes a

choice of pairs.

The remaining case is when p is odd. Here, the heuristic can still work with pairs

of players, except for the last player in each group. With probability γ, that player

is randomly selected from all players that are still remaining to be scheduled in that

week. With probability 1 − γ, the numerically smallest remaining player is selected.

As before, the heuristic is readily generalized from pairs to larger sets of players, and

again there is a clear trade-off between maximizing freedom of groups and efficiency.
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The intuition behind maximizing the freedom among players of a group is to “make

room” for good local moves, which we discuss in the next section.

7 The Local Search Component

We aimed to keep the local search component as simple as possible. We chose the

approach underlying the memetic algorithm (Cotta et al. 2006) and tabu-search (Dotú

and Hentenryck 2005) as our basis, and then simplified it further. In particular, we

eliminated the restart component, which we found not to be necessary in experiments:

Even after omitting the restart component, our local search matched or exceeded the

local search approaches reported in the literature. Also, based on experiments with

different lengths of tabu lists, we fixed the length of tabu lists to 10 instead of imposing

random limits as in (Dotú and Hentenryck (2005)).

Let C denote a configuration. The triple (i, j, k) is a conflict position iff there is

a k′ 6= k such that there is a week i′ 6= i with v(Gijk) = v(Gi′lm) and v(Gijk′) =

v(Gi′ln) for any l, m and n, i.e., wherever a player is in the same group with an-

other player more than once. Let f(C) denote the number of conflict positions in C.

Clearly, f(C) is in the range 0 . . . g × p × w. A swap affecting position (i, j, k) means

the exchange of the values of Gijk with that of any other variable Gij′k′ , j 6= j′. Note

that swaps preserve constraints (1) and (2).

A local search iteration starting from a configuration C that satisfies constraints (1)

and (2) proceeds as follows: First, determine f = f(C). If f = 0, we have found

a solution and are done. Otherwise, of all swaps affecting conflict positions, make

the swap that leads to a configuration C′ with minimal f(C′) among all considered

configurations (breaking ties lexicographically).

In addition, we associate a tabu list with each week that stores all pairs of players

that were exchanged within the last 10 iterations in that week. Swaps that affect a pair

of players in the corresponding week’s tabu list are only considered if they result in an

improvement over the best solution found so far. Also, if there was no improvement

for 4 iterations, two random swaps are made.

We determined these parameters in test runs over all instances (see Section 8),

and this combination worked best when averaged over the running times of all tested

instances. By varying these parameters, we sometimes solved specific instances much

faster, but others then turned out to be unsolvable within the time limit. In that

respect, the local search is sensitive to these parameters. We tested all combinations of

parameters up to a tabu list length of 20, up to 5 random swaps, and swapping after up

to 10 iterations of non-improvement. To illustrate the algorithm’s sensitivity to these

parameters, Table 2 gives average running times (over 10 runs) for selected parameter

combinations for three instances (10−6−7, 6−5−6 and 9−3−12) that we identified as

hard instances for many parameter combinations. Each instance was tested with an

initial configuration generated with γ = 0 as explained in the next section; “–” means

that no solution was found within 20 minutes. With the parameter configuration that

we eventually used, a solution was only found in two out of ten runs for instance

10−6−7 (first after 11 minutes, then after 9).
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Table 2 Timing results for selected parameter configurations on hard instances

instance # iter. of non-improvement # random swaps tabu list length time
6−5−6 2 1 5 –
6−5−6 2 3 5 2min
6−5−6 4 2 10 4min
6−5−6 4 2 20 2min
6−5−6 4 5 10 –
9−3−12 2 1 5 –
9−3−12 2 3 5 –
9−3−12 4 2 10 15min
9−3−12 4 2 20 –
9−3−12 4 5 10 20s
10−6−7 2 1 5 –
10−6−7 2 3 5 –
10−6−7 4 2 10 10min
10−6−7 4 2 20 –
10−6−7 4 5 10 –

Table 3 Running times for selected instances using the parameters described in Section 7
(γ = 0)

instance time instance time
5−3−7 0.2s 8−8−5 37s
8−3−10 0.4s 9−3−11 0.2s
8−4−9 1.2s 9−4−9 5.6s
8−4−10 11min 10−3−13 7.8s

8 Experimental Results

We executed 10 runs for each instance g−p−w presented here, using an Apple MacBook

with a 2.16 GHz Intel Core 2 Duo CPU and 1GB RAM. First, the greedy heuristic

was used to generate an initial configuration with γ = 0. The time it takes to generate

an initial configuration for the benchmark instances is negligible, i.e., at most half a

second. Then the local search component is run with this starting configuration.

We chose 20 minutes as the maximum running time of the algorithm, since this is

also the limit used in the benchmarks of the memetic algorithm (Cotta et al. 2006)

on a similar (even faster) machine configuration, with which we wanted to allow a

fair comparison. We considered an instance solved if a solution was found in at least

one of the 10 runs we performed. With a single exception, all tested instances were

consistently solved well within the 20 minutes time limit. The only exception was the

instance 10−6−7, which was solved only in two runs out of ten within the time limit.

Our results are shown in Fig. 2. For various values of g and p, we show groups of

three bars, which denote the maximum w such that the instance could be solved with

(from left to right): Our scheme, the best memetic algorithm (Cotta et al. 2006), and

local search alone (Dotú and Hentenryck 2005). The latter values are similar to those

we obtain if we run the local search component in isolation, starting from the trivial

configuration where each week is the same. In particular, we cannot even solve the

8−4−9 instance, let alone 8−4−10, without our greedy heuristic. For each instance,

the thin horizontal lines show the (optimistic) upper bound and the best solution

obtained with a mix of constraint-based formulations and basic design-theoretic tech-

niques (Harvey 2002), respectively. Table 3 shows average running times for selected

instances with γ = 0.
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Fig. 2 Solved number of weeks for g equal to (a) 6, (b) 7, (c) 8, (d) 9 and (e) 10, with
various values of p. Each group of three bars represents the maximum w obtained by (from
left to right): Our scheme, the best memetic approach proposed in (Cotta et al. 2006), and
local search alone (Dotú and Hentenryck 2005). The thin horizontal lines show the best w

found with constraint solvers and design theory (Harvey 2002) and optimistic upper bounds,
respectively.
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It is clear from these figures that our approach is highly competitive on other

instances besides the original problem as well: On all tested instances, it finds solutions

for as many weeks as the best variant of the memetic algorithm (surpassing it on

8−4−10 and 8−8−5), and surpasses plain local search and constraint-based solutions

in many cases.

9 New Solutions for the 8−4−10 Instance

The 8−4−10 instance of the SGP is of particular interest due to two reasons: First, it

is the optimal solution for “the” Social Golfer Problem in the original sense, which is

problem number 10 in CSPLib, a benchmark library for constraints (Gent and Walsh

1999). Second, being on the verge of solvability, the instance was previously thought to

be amenable only to constraint solvers due to its highly constrained nature (previous

metaheuristics could only solve for eight weeks). However, even the most sophisticated

constraint solvers are currently unable to solve the instance. In contrast, by starting

from our greedy initial configuration, solutions for this instance are readily generated.

Two such solutions are depicted in Fig. 3. They were found by varying the random-

ization factor γ of the greedy heuristic. Computation time was 11 and 4 minutes,

respectively. We used McKay’s dreadnaut program (McKay 1990) on the Levi graphs

(Colbourn and Dinitz 1996) of the two solutions to verify that they are not isomorphic.

The fact that we could obtain structurally different solutions is an indication that the

greedy heuristic is meaningful and does not work only by accident.

It is left to explain why the greedy heuristic works so well on the 8−4−10 instance.

Here, we believe that observing the solution process can give an important indication:

To see an effect of the greedy heuristic, consider first Fig. 4, which shows what happens

when the search is started from the trivial initial configuration of simply lining up the

players in order for each week. For comparison, Fig. 5 shows different states of the local

search component starting from a greedy initial configuration with γ = 0, with conflict

positions highlighted. Initially, every position is a conflict position in both cases.

When contrasting the distribution of conflicts in the two figures, one effect of the

greedy initial heuristic is apparent: Conflicts become more concentrated, and some

weeks become conflict-free very early. In contrast, with a bad initial heuristic (Fig. 4),

remaining conflicts are dispersed throughout all weeks. We believe that Fig. 5 gives a

valuable suggestion on how the SGP could be successfully approached with a completely

different local search method, which explicitly encodes a behaviour that is similar to the

one found in this case. For example, one could build conflict-free groups incrementally,

while exchanging players in existing weeks or dropping already built groups on occasion.

10 Conclusions and Future Work

We introduced a new greedy heuristic for the SGP, based on the intuitive concept

of freedom among players. The heuristic is readily randomized and generalized, and

was shown to improve results obtained by local search alone. In particular, we have

obtained new solutions for the 8−4−10 instance. This makes our approach the first

metaheuristic method that solves the original problem optimally, and also surpasses

current constraint solvers on this instance. In addition, our approach is among the sim-

plest and was shown to be highly competitive with other metaheuristic and constraint-
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Fig. 3 Two new non-isomorphic solutions for the 8−4−10 instance

based techniques on other instances as well. The dual of this heuristic was used to

guide a complete backtracking search and solved Kirkman’s schoolgirl problem with a

very simple method.

Several interesting questions and opportunities for future research arise from our

results: First, what other good greedy heuristics are there for the SGP and related

problems? Second, it seems interesting to use the schedules produced by our greedy

heuristic as initial configurations in combination with a proposed SAT formulation
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Fig. 4 Instance 8−4−10, local search using a trivial initial configuration. Conflicts after (a) 0,
(b) 10, (c) 100, (d) 500 iterations.

Group 1

Group 2

Group 3

Group 4

Group 5

Group 6

Group 7

Group 8

Group 1

Group 2

Group 3

Group 4

Group 5

Group 6

Group 7

Group 8

Week 1 Week 2 Week 3 Week 4 Week 5

Week 6 Week 7 Week 8 Week 9 Week 10

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

16 17 18 19

20 21 22 23

24 25 26 27

28 29 30 31

0 14 5

2 36 7

8 912 13

10 1114 15

16 1720 21

18 1922 23

24 2528 29

26 2730 31

0 16 7

2 34 5

8 914 15

10 1112 13

16 1722 23

18 1920 21

24 2530 31

26 2728 29

0 18 9

2 310 11

4 512 13

6 714 15

16 1724 25

18 1926 27

20 2128 29

22 2330 31

0 110 11

2 38 9

4 514 15

6 712 13

16 1726 27

18 1924 25

20 2130 31

22 2328 29

0 112 13

2 314 15

4 58 9

6 710 11

16 1728 29

18 1930 31

20 2124 25

22 2326 27

0 114 15

2 312 13

4 510 11

6 78 9

16 1730 31

18 1928 29

20 2126 27

22 2324 25

0 116 17

2 318 19

4 520 21

6 722 23

8 924 25

10 1126 27

12 1328 29

14 1530 31

0 118 19

2 316 17

4 522 23

6 720 21

8 926 27

10 1124 25

12 1330 31

14 1528 29

0 120 21

2 322 23

4 516 17

6 718 19

8 928 29

10 1130 31

12 1324 25

14 1526 27

(a)

Group 1

Group 2

Group 3

Group 4

Group 5

Group 6

Group 7

Group 8

Group 1

Group 2

Group 3

Group 4

Group 5

Group 6

Group 7

Group 8

Week 1 Week 2 Week 3 Week 4 Week 5

Week 6 Week 7 Week 8 Week 9 Week 10

9

7

29

24

29

0

13

1

23

19

12

0

8

10

20

5

12

9

326

12

0

30

22

24

19

16

13

16

7

15 1

23

2

013

2

17

238

22

30

6

5

26

30

18

25

28

6

25

3

5

7

26

1413

12

17

8

17

9

27

25

27

4

27

20

25

9

11

16

18

7

31

21

10

17

3

9

19

175 4

31

2

26

24

2

21

16

19

15

8

2

14

7

29

21

0

3

0 18

30

2

8

23

23

20

15

18

12

10

28

11

28

5

66

16

11

13

7

8

26

25

7

30

8

22

11

12

19

4

23

3

1

1812

18

29

13

10

27

27

27

26

3

1

24

25

20

21

10

30 31

17

5

6

29

29

1913

25

24

28

30

22

29

3

4

11

24

28

30

22

16

30

9

21

23

9

19

4

20

2

21

8

1

9

28

12

22

0

6

13

3

21

11

77

28

6

20

14

1

17

1

21

3

14

4

29

1

3131

24

12

21

4

18

31

14

27

22

24

17

1515

10

20

24

27

11

18

25

164

11

11

29

31

19

21

22

16

28

8

8

27

25

15

14

23

10

11

6

9

15

3128

25

5

31

22

1

13

20

22

23

5

16

18

14

20

7

26 26

6

0

23

13

14

2

26

15

20

17

2

28

2

16 14

15

10

0

26

24

4

17

27

15

19

29

3

5

1

14

9

31

6

10

12

19

30

0

10

4

18

5

(b)

Group 1

Group 2

Group 3

Group 4

Group 5

Group 6

Group 7

Group 8

Group 1

Group 2

Group 3

Group 4

Group 5

Group 6

Group 7

Group 8

Week 1 Week 2 Week 3 Week 4 Week 5

Week 6 Week 7 Week 8 Week 9 Week 10

9

7

29

24

29

31

13

1

23

16

12

6

17

2

2

5

17

21

326

26

0

30

22

24

19

22

17

30

7

13 1

11

29

011

2

17

238

22

28

6

5

6

8

4

25

28

6

25

3

5

7

26

1213

12

17

0

25

15

27

25

2

2

27

20

25

9

11

16

18

7

31

21

10

8

3

9

19

175 4

17

2

26

24

20

21

16

19

15

8

2

6

7

27

21

28

3

14 18

0

27

8

23

23

20

19

18

21

10

28

11

28

5

140

16

11

13

7

8

12

25

7

30

8

16

11

12

19

4

31

3

1

1812

20

4

13

28

27

19

27

26

3

1

26

31

20

21

10

30 0

16

5

26

29

21

1915

17

24

28

2

22

2

3

12

11

24

30

30

22

6

30

9

9

23

9

10

18

20

30

12

8

1

9

28

12

22

22

31

13

3

21

11

77

28

16

18

23

1

17

1

21

3

14

24

29

1

3131

4

4

21

6

14

6

14

27

22

24

12

1515

10

20

24

27

11

18

25

164

13

11

29

25

27

29

22

18

10

10

30

27

25

15

14

14

19

23

6

9

9

2328

25

5

31

0

1

13

22

20

23

5

18

18

24

20

7

26 26

6

8

23

13

19

0

26

15

20

17

10

0

4

16 14

31

10

2

24

14

29

13

29

15

15

29

3

5

1

15

9

31

4

10

14

19

30

0

8

4

16

5

(c)

Group 1

Group 2

Group 3

Group 4

Group 5

Group 6

Group 7

Group 8

Group 1

Group 2

Group 3

Group 4

Group 5

Group 6

Group 7

Group 8

Week 1 Week 2 Week 3 Week 4 Week 5

Week 6 Week 7 Week 8 Week 9 Week 10

9

7

29

27

29

31

13

1

20

16

12

6

17

2

2

5

17

21

326

26

0

30

22

24

19

22

17

31

7

13 1

11

29

011

2

17

238

5

28

6

5

6

8

4

10

28

22

25

3

5

7

26

1213

12

17

0

25

15

11

25

2

2

27

20

25

9

11

16

18

7

31

29

10

8

3

9

19

175 4

16

2

26

24

20

21

16

19

15

8

2

6

7

27

21

28

3

17 18

0

27

8

20

23

4

19

18

21

10

28

11

28

5

140

16

11

13

7

8

12

25

7

30

27

16

11

18

19

4

31

3

1

1812

20

4

13

28

27

19

27

26

3

1

26

31

20

21

10

30 0

14

6

26

29

21

1915

17

24

28

2

22

2

3

12

11

25

30

30

22

14

30

9

9

23

25

10

18

23

30

12

8

1

9

28

12

22

22

31

13

3

21

11

74

28

16

18

23

1

17

1

21

3

14

24

29

1

3131

4

4

21

6

14

6

14

27

22

24

12

1515

9

20

24

27

24

12

25

167

13

6

29

25

27

29

22

18

10

10

30

8

25

15

14

14

19

23

24

9

9

2328

11

5

31

0

1

13

22

20

23

5

18

18

24

20

7

26 26

6

8

23

13

19

0

26

15

20

17

10

0

4

16 14

30

10

2

24

6

29

13

29

15

15

21

3

5

1

15

9

31

4

10

14

19

30

0

8

23

16

5

(d)

Fig. 5 Instance 8−4−10, local search with our greedy initial configuration (γ = 0). Conflicts
after (a) 0, (b) 10, (c) 100, (d) 500 iterations.



13

from the literature (Gent and Lynce 2005), and to use existing SAT solvers as the

local search component. This could further reduce the effort for solving the problem.

Third, we considered only one among several options for neighbourhoods and evaluation

functions in the local search component, and it would be interesting to compare this

with other variants. For example, it seems promising to take the freedom of players

also into account in the local search component. Finally, observing the solution process

of heuristics that are known to work well can give valuable hints on what else to try.
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