
Masterarbeit

Solution Methods for the Social Golfer Problem

Ausgeführt am Institut für

Informationssysteme 184/2
Abteilung für Datenbanken und Artificial Intelligence

der Technischen Universität Wien

unter der Anleitung von Priv.-Doz. Dr. Nysret Musliu

durch

Markus Triska

Kochgasse 19/7, 1080 Wien

Wien, am 20. März 2008

Abstract

The social golfer problem (SGP) is a combinatorial optimisation problem.
The task is to schedule g×p golfers in g groups of p players for w weeks such
that no two golfers play in the same group more than once. An instance of
the SGP is denoted by the triple g−p−w. The original problem asks for the
maximal w such that the instance 8−4−w can be solved.

In addition to being an interesting puzzle and hard benchmark problem,
the SGP and closely related problems arise in many practical applications
such as encoding, encryption and covering tasks.

In this thesis, we present and improve upon existing approaches towards
solving SGP instances. We prove that the completion problem correspond-
ing to the SGP is NP-complete. We correct several mistakes of an existing
SAT encoding for the SGP, and propose a modification that yields consid-
erably improved running times when solving SGP instances with common
SAT solvers. We develop a new and freely available finite domain constraint
solver, which lets us experiment with an existing constraint-based formula-
tion of the SGP. We use our solver to solve the original problem for 9 weeks,
thus matching the best current results of commercial constraint solvers for
this instance. We present a new greedy heuristic and a new greedy ran-
domised adaptive search procedure (GRASP) for the SGP. Our method is
the first metaheuristic technique that can solve the original problem op-
timally, and is also highly competitive with existing approaches on many
other instances.

ii

Acknowledgements

First and foremost, I thank my advisor Nysret Musliu for supervising this
thesis. His encouragement and support were invaluable to me.

Further, I thank Ulrich Neumerkel for introducing me to constraint logic
programming, and drawing my attention to PostScript. My gratitude also
goes to Mats Carlsson, whose exceptionally elegant CLP(FD) formulation
of the SGP spawned my interest in the problem.

Jan Wielemaker provides a robust, feature-rich and free Prolog system,
which I used extensively. Thank you!

I also thank my parents for making it all possible in the first place. Last,
not least, I thank my girlfriend Beate for her love.

iii

CONTENTS

Contents

Abstract ii

Acknowledgements iii

1 Introduction 3
1.1 Problem statement . 3
1.2 Applications of the SGP . 3
1.3 Computational complexity of the SGP 4
1.4 Goals of this thesis . 4
1.5 Main results of this thesis . 4
1.6 Further organisation of this thesis 5

2 Design theoretic techniques 6
2.1 Introduction . 6
2.2 Balanced incomplete block designs 6
2.3 Steiner triple systems . 7
2.4 Resolvable designs . 8
2.5 Kirkman triple systems . 10
2.6 Finite projective planes . 10
2.7 Affine planes . 11
2.8 Latin squares . 12
2.9 The computational complexity of the SGP 14
2.10 Orthogonal Latin squares . 15
2.11 Isomorphic designs . 17
2.12 Solving the original SGP instance 18
2.13 Conclusion . 18

3 SAT formulations 21
3.1 Introduction . 21
3.2 Reasons for SAT formulations 21
3.3 The SAT formulation by Gent and Lynce 21
3.4 Revisiting the SAT formulation by Gent and Lynce 24
3.5 Improving the SAT formulation by Gent and Lynce 26
3.6 Experimental results . 28
3.7 Symmetry breaking . 28
3.8 Experimental results again . 30
3.9 More symmetry breaking . 31
3.10 Working with SAT instances 32
3.11 Conclusion . 33

1

CONTENTS

4 Constraint programming formulations 37
4.1 Introduction . 37
4.2 Constraint logic programming 37
4.3 CLP(FD) . 38
4.4 Example: Sudoku . 38
4.5 Constraint propagation and search 39
4.6 Selection strategies for variables and values 41
4.7 Visualising the constraint solving process 43
4.8 CLP formulations for the SGP 45

4.8.1 An ECLiPSe formulation of the SGP 45
4.8.2 A SICStus CLP(FD) formulation of the SGP 48

4.9 A new finite domain constraint solver 51
4.10 Experimental results . 54
4.11 Conclusion . 54

5 A new greedy heuristic for the SGP 57
5.1 An important observation . 57
5.2 Freedom of sets of players . 58
5.3 A greedy heuristic for the SGP 59

6 Metaheuristic methods 62
6.1 Introduction . 62
6.2 Metaheuristic SAT solving . 62
6.3 Local search for the SGP . 63

6.3.1 The model . 63
6.3.2 The neighbourhood 64
6.3.3 The tabu component 64
6.3.4 The tabu search algorithm 65

6.4 Memetic evolutionary programming 65
6.5 A new GRASP for the SGP 66

6.5.1 The greedy heuristic 66
6.5.2 The local search component 67
6.5.3 Experimental results 67
6.5.4 New solutions for the 8−4−10 instance 68

6.6 Conclusion . 72

7 Conclusion and future work 73

A Creating portable animations 75

B Bibliography 77

Index 81

2

1 Introduction

1.1 Problem statement

The social golfer problem (SGP) is a combinatorial optimisation problem
derived from a question posted to sci.op-research in May 1998:

32 golfers play golf once a week, and always in groups of 4.
For how many weeks can they do this such that no two golfers
play in the same group more than once?

The problem is readily generalised to the following decision problem: Is
it possible to schedule g×p golfers in g groups of p players for w weeks such
that no two golfers play in the same group more than once? An instance of
the SGP is denoted by the triple g−p−w. In this thesis, we study the gen-
eral form of the problem, and solve the original problem instance (8−4−w)
among others.

Some instances of the SGP have a long history. For example, Euler
asked whether two orthogonal Latin squares of order 6 exist, which has
become known as “Euler’s officer problem” ([Eul82]). In terms of the SGP,
this corresponds to solving the 6−6−4 instance, which is now known to be
impossible. As another special case of the SGP, the 5−3−7 instance also
has a long history and is known as Kirkman’s schoolgirl problem ([Kir47]).

In the recent past, the SGP has attracted much attention from the con-
straint programming community. It is problem number 10 in CSPLib, a
benchmark library for constraints ([GW99]).

1.2 Applications of the SGP

In addition to being a challenging and interesting puzzle that is obviously
useful in golf scheduling, the SGP and closely related problems have many
practical applications, such as in encoding, encryption, and covering prob-
lems ([HBC70], [Dou94], [GKP95]). We give two simple examples, and more
follow in Chapter 2:

Example 1.1. You coordinate a chess tournament for 2n players. Each
player should play against each other player exactly once, and each player
should play exactly once on each day of the tournament. Clearly, this in-
volves designing a schedule for 2n − 1 days. Further, it is equivalent to
solving the SGP instance n−2−(2n − 1).

Example 1.2. You communicate with a satellite that can emit n distinct
frequencies. You use a code alphabet of m different frequencies for each
word. To allow for correction of transmission errors, you require that each
pair of frequencies occur at most once in the same word. Interpret frequen-
cies as players and words as groups. Clearly, solving the resulting SGP
instance yields such a set of code words.

3

1.3 Computational complexity of the SGP

1.3 Computational complexity of the SGP

Little is known about the computational complexity of the SGP. Some in-
stances are easy to solve using deterministic construction methods from
design theory, a branch of discrete mathematics, and we explain some of
them in Chapter 2. It is also clear that not all SGP instances are solvable,
and trivial upper bounds are easy to determine. For example, in the original
problem statement (8−4−w), w can be no more than 10.

Proof. Suppose w ≥ 11, and observe the schedule of an arbitrary but fixed
player α. Each week, α plays in a group with 3 distinct other players. To
play for 11 weeks, α would have to partner 3× 11 > 31 other players.

1.4 Goals of this thesis

The goals of this thesis are:

1. to present and discuss the most prominent existing approaches towards
solving SGP instances, which are:

• design theoretic techniques

• SAT encodings

• constraint-based approaches

• metaheuristic methods

2. to contribute, as far as possible, to each of these approaches

3. to go, where possible, beyond existing approaches, and obtain new
results about the SGP

1.5 Main results of this thesis

We briefly summarise the main results of this thesis:

• We prove that the completion problem corresponding to the SGP, i.e.,
deciding whether a partial schedule can be completed to a valid one,
is NP-complete.

• We correct several mistakes in the SAT formulation proposed by Gent
and Lynce in [GL05] and [Lyn05]. We then improve upon the corrected
formulation, and propose a change in the encoding that significantly
reduces the number of variables for all given instances. We show that
our formulation can improve running times considerably when solving
SGP instances with common SAT solvers.

4

1.6 Further organisation of this thesis

• We develop a new finite domain constraint solver with the intention to
run the SICStus Prolog code published by Carlsson ([Car05]) in a free
environment. Guided by customised visualisations of the constraint
solving process for the SGP, we use our solver to find solutions for many
instances, most notably 8−4−9. This matches the currently best result
obtained with commercial constraint solvers for the original problem.
Our solver is included in the free Prolog systems SWI-Prolog ([Wie03])
and YAP ([dSC06]).

• We describe a new greedy heuristic based on the notion of freedom of
sets of players. We use it in a complete backtracking search to solve the
instances 8−4−9 and 5−3−7, thus matching constraint-based results
on these instances with much simpler methods.

• We use the underlying idea of our greedy heuristic in a new greedy
randomised adaptive search procedure (GRASP) for the SGP. Our
approach is the first metaheuristic method that can solve the origi-
nal SGP optimally, and is also highly competitive with existing ap-
proaches on many other instances.

1.6 Further organisation of this thesis

In Chapter 2, we introduce terminology from design theory and show de-
terministic construction methods for SGP instances. We also mention and
obtain several existence and inexistence results, and discuss other combina-
torial problems that are closely related to the SGP.

In Chapter 3, we correct and improve an existing SAT formulation for
the SGP, and solve several SGP instances with common SAT solvers.

We present two existing constraint-based approaches for the SGP in
Chapter 4. We use animations of the constraint solving process to obtain
valuable suggestions for alternative allocation strategies.

In Chapter 5, we derive a new greedy heuristic for the SGP. We use a
variant of this heuristic in Chapter 6, where we discuss existing metaheuristic
methods and also present a new GRASP scheme for the SGP.

Chapter 7 concludes and presents opportunities for future research.

5

2 Design theoretic techniques

2.1 Introduction

Design theory is a subfield of discrete mathematics. Typical applications
of design theoretic techniques include statistical designs, and tournaments
involving certain balance properties, such as round-robin tournaments.

In this chapter, we introduce several important design theoretic concepts,
such as Latin squares, Steiner triple systems and balanced incomplete block
designs, and discuss how they relate to the SGP. We also explain a few
construction methods, mention and obtain several existence and inexistence
results, and establish the computational complexity of the completion prob-
lem corresponding to the SGP.

2.2 Balanced incomplete block designs

The statistician F. Yates studied subsets of a set subject to certain balance
properties in his 1936 paper [Yat36], with which the modern study of block
designs began. We first give the formal definition of what has become known
as (v, k, λ) balanced incomplete block designs or simply (v, k, λ) designs:

Definition 2.1. A (v, k, λ) balanced incomplete block design (BIBD) is a
collection of k-element subsets (called blocks) of a v-element set S (k < v),
such that each 2-element subset of S is contained in exactly λ blocks.

BIBDs arise naturally in many statistical experiments, where all compar-
isons between pairs of elements should typically occur equally often across
all possible pairs for fairness. Since k < v, no block can contain all elements
of S, hence the designation “incomplete”. Yates gives the following example
of a (6, 3, 2)-BIBD in his paper:

Example 2.1. S = {a, b, c, d, e, f}, with the following 10 3-element blocks:
{a, b, c}, {a, b, d}, {a, c, e}, {a, d, f}, {a, e, f}, {b, c, f}, {b, d, e}, {b, e, f},
{c, d, e}, and {c, d, f}.

In this example, every element occurs in the same number of blocks.
Interestingly, this property holds for all BIBDs, and we will later make use
of the following well-known theorem ([CD96], [And97]):

Theorem 2.1. In a (v, k, λ) design with b blocks, each element occurs in
exactly r blocks, and the following equivalences hold:

λ(v − 1) = r(k − 1) (2.1)

bk = vr (2.2)

6

2.3 Steiner triple systems

Proof. Take any element x ∈ S, and let r be the number of blocks that
contain x. In each of these blocks, x forms a pair with k− 1 other elements,
so there are r(k − 1) pairs that involve x. Since x is paired with each of
the v−1 other elements exactly λ times, it must hold that r(k−1) = λ(v−1).
This shows that r is uniquely determined by v, k and λ, and must thus be
the same for all elements of S. Since each of the v elements appears in
r blocks, there are vr appearances of elements in blocks. And since each of
the b blocks has k elements, vr = bk.

Specific instances of what has now become known as BIBDs were already
studied long before Yates, and often in different contexts. The following
example introduces a (7, 3, 1) design called the seven-point plane and shows
a geometrical interpretation.

Example 2.2. Let S = {1, . . . , 7}, with the following seven 3-element
blocks: {1, 2, 4}, {2, 3, 5}, {3, 4, 6}, {4, 5, 7}, {5, 6, 1}, {6, 7, 2}, and {7, 1, 3}.
This (7, 3, 1) design is called the seven-point plane or Fano plane, and it is
unique up to renumbering of elements. The 7 elements of S can be con-
sidered as points, and the blocks as lines that connect the elements they
contain. A depiction of this design is shown in Fig. 2.1.

1

2 3

4
5

6

7

Figure 2.1: The seven-point plane

Notice that in the case of the SGP, a pair of players need not play
together in any group at all, in contrast to BIBDs. It is only required that
each pair play at most once in the same group, i.e., two players can play
together either not at all or exactly once. Such designs are therefore also
called (0,1)-designs.

2.3 Steiner triple systems

The seven-point plane is an instance of the infinite family of (v, 3, 1) designs,
which have become known as Steiner triple systems ([LR97], [CD96]):

7

2.4 Resolvable designs

Definition 2.2. A Steiner triple system STS(v) of order v is a (v, 3, 1)
design.

If an STS(v) exists, then by Theorem 2.1 it must hold that b = 1
6v(v−1)

and r = 1
2(v − 1). Therefore, v = 2r + 1, b = 1

3r(2r + 1), and v must be
odd. Continuing, either r or (2r+1) must be divisible by 3. Stating this in
another way, we have either r = 3n or r = 3n+1, and substituting these two
possibilities into the equation for v, we have either v = 6n+1 or v = 6n+3,
justifying the following lemma:

Lemma 2.1. If an STS(v) exists, then v ≡ 1 (mod 6) or v ≡ 3 (mod 6).

The first existence results for Steiner triple systems were obtained by
Kirkman, who proved the following in 1847 ([Kir47]): When v ≥ 3 and
either v ≡ 1 (mod 6) or v ≡ 3 (mod 6), an STS(v) exists. Nevertheless,
these designs were named after Steiner, who studied them in a geometrical
context and posed the problem independently in 1853.

2.4 Resolvable designs

Resolvability is a fundamental concept in combinatorial designs and arises
extensively in many practical applications, such as tournament scheduling.

Definition 2.3. A BIBD is resolvable if its blocks can be partitioned into
c classes such that each element of the design occurs in exactly one of the
v/k = b/c groups of each class. The classes are called parallel classes or
resolution classes. The partition into classes is called a resolution.

Example 2.3. Consider the following (9, 3, 1)-design consisting of 12 blocks:

{0, 1, 2} {0, 3, 6} {0, 4, 8} {0, 5, 7}
{3, 4, 5} {1, 4, 7} {1, 5, 6} {1, 3, 8}
{6, 7, 8} {2, 5, 8} {2, 3, 7} {2, 4, 6}

Each vertical group of three blocks is a resolution class.

The following theorem shows our first application of design theoretic
techniques to the SGP in this chapter:

Theorem 2.2. If D is a resolvable (v, k, 1) design, then a resolution of D
into w parallel classes is a solution for the SGP instance v

k
−k−w.

Proof. Enumerate the elements, which correspond to golfers, as {1, . . . , v}.
The design’s blocks correspond to groups of golfers, and the w parallel classes
are regarded as the weeks. Since they are resolution classes, each golfer
plays exactly once in each week. Also, each 2-element subset of {1, . . . , v},
is contained in exactly one block. Therefore, no pair of golfers occurs more
than once in any group.

8

2.4 Resolvable designs

As another example, consider the task of constructing a tournament
schedule for 2n teams in which each team should play against each other
team exactly once, and each team should play exactly once on any day. In
other words, the task is to find a resolvable (2n, 2, 1) design, which must
have 2n − 1 resolution classes. By Theorem 2.2, such a design would also
solve the SGP instance n−2−(2n− 1). One can show:

Theorem 2.3. For each positive integer n, there exists a resolvable (2n, 2, 1)
design.

Proof. See [And97].

In fact, more holds: There is a well-known construction method for such
designs ([And97]), and it is the first construction method for designs that
we present in this chapter: Represent the teams by the symbol ∞ and the
numbers 1, . . . , 2n − 1. Place the numbers equally spaced around a circle,
and place the symbol ∞ at the circle’s center. The games on day i are built
by joining ∞ with i, and the other teams with parallel chords as shown in
Fig. 2.2 for the first two days.

∞

1

2

3

45

6

7

(a)

∞

1

2

3

45

6

7

(b)

Figure 2.2: Matches between pairs of teams on (a) day 1 and (b) day 2

The construction method justifies the following theorem:

Theorem 2.4. SGP instances of the form n−2−(2n − 1) can be easily
solved.

The following result was proved by Kirkman in 1850, and also establishes
the existence of corresponding SGP instances:

Proposition 2.1. For each prime p and each positive integer n, a resolvable
(pn, p, 1) design exists.

9

2.5 Kirkman triple systems

2.5 Kirkman triple systems

In 1850, Kirkman posed the following problem in the then popular math
magazine Lady’s and Gentleman’s Diary :

Fifteen young ladies in a school walk out three abreast for
seven days in succession: it is required to arrange them daily, so
that no two shall walk twice abreast.

In other words, the task is to find a resolvable (15,3,1) design, i.e., a
resolvable STS(15). Such designs are instances of Kirkman triple systems:

Definition 2.4. A Kirkman triple system of order v, denoted as KTS(v),
is a resolvable STS(v).

Example 2.4. Example 2.3 shows a KTS(9).

Kirkman’s original problem, i.e., finding a KTS(15), has become known
as Kirkman’s schoolgirl problem, and Kirkman solved it himself with an in-
teresting construction method. We will later solve it with different methods.
The following is immediate and well-known:

Theorem 2.5. A KTS(v) can only exist if v ≡ 3 (mod 6).

Proof. From Lemma 2.1, the case v ≡ 1 (mod 6) can be eliminated, since v
must be divisible by 3 for resolvability.

Using Proposition 2.1, we obtain:

Theorem 2.6. A KTS(3n) exists for all positive integers n.

Applying Theorem 2.1 yields the following corollary:

Corollary 2.1. SGP instances of the form 3n−1−3−3n−1
2 are solvable.

2.6 Finite projective planes

In addition to being a Steiner triple system, the seven-point plane is also a
member of another infinite family of designs which are called finite projective
planes ([CD96]):

Definition 2.5. A finite projective plane of order n is an (n2+n+1, n+1, 1)
design, n ≥ 2.

Example 2.5. The seven-point plane is a finite projective plane of order 2.

Finite projective planes originate from geometrical contexts and can be
equivalently defined in the terminology of axiomatic geometry:

10

2.7 Affine planes

Definition 2.6. A finite incidence structure P = (P,L, I), also called finite
geometry, is a finite set of points P, a finite set of lines L, and an incidence
relation I between them.

Definition 2.7. A finite projective plane P is a finite incidence structure
with the following properties:

1. any two distinct points are incident with exactly one line

2. any two distinct lines are incident with exactly one point

3. there exists a quadrangle, i.e., four points such that no line is incident
with more than two of them

It can be shown that for any finite projective plane P , there is a positive
integer n such that every line of P has exactly n+ 1 points. The number n
is called the order of P , and coincides with the order defined from the
design theoretic view. Determining which positive integers are orders of
finite projective planes is currently an open question in finite geometry. One
can show that there is a finite projective plane of order n when n is a prime
power, and the orders of all known examples of finite projective planes are
prime powers. It is also known that no finite projective plane of order 10
exists. This result was obtained by a backtracking search conducted by
Lam, Thiel and Swiercz after more than 800 days of CPU time ([LTS86]).
A theorem by Bruck and Ryser ([BR49]) rules out an infinite number of
other cases.

2.7 Affine planes

If one interprets a resolvable design geometrically, with the blocks being
the lines, then one can regard the blocks within a single resolution class
as parallel lines, since they have no point, i.e., element, in common. Using
again terminology originating from geometry, we define ([CD96]):

Definition 2.8. A finite affine plane is a finite incidence structure with the
following properties:

1. any two distinct points are incident with exactly one line

2. for any point P outside a line ℓ there is exactly one line through P
that has no point in common with ℓ

3. there exist three points that are not incident with a common line

Property 2 is the Euclidean parallel axiom, and affine planes are therefore
sometimes called Euclidean planes. They stand in contrast to projective
planes, in which any two lines meet.

From a design theoretic point of view, a finite affine plane is equivalently
defined as ([And97]):

11

2.8 Latin squares

Definition 2.9. A finite affine plane of order n is an (n2, n, 1) design.

A projective plane P can be constructed from an affine plane A as fol-
lows (see [LR97]): Let the points of P be the points of A plus one point for
each parallel class of A, and let the lines of P be the lines of A, plus one new
line ℓ∗. Let ℓ∗ be incident with all points corresponding to parallel classes,
and add to each line ℓ of P the point corresponding to the parallel class to
which ℓ belongs in A. Conversely, given a projective plane, simply remove
any line together with all its points to obtain an affine plane. This justifies
the following well-known theorem:

Theorem 2.7. An affine plane of order n exists if and only if a finite pro-
jective plane of order n exists.

The following important property holds (see [LR97]):

Proposition 2.2. Every affine plane is resolvable.

Every solution for an SGP instance of the form n−n−(n + 1) (n > 1)
must thus be an affine plane. Finding a solution for such an instance where
n is not a prime power would therefore settle an open problem of finite
geometry, which is whether a finite projective plane whose order is not a
prime power exists. The connection between affine and projective planes
also implies the following theorem:

Theorem 2.8. The SGP instance 10−10−11 cannot be solved.

Proof. A solution for the SGP instance 10−10−11 is a resolvable (102, 10, 1)
design and thus a finite affine plane of order 10. This would imply the
existence of a finite projective plane of order 10, which does not exist.

The aforementioned Bruck-Ryser theorem rules out additional cases,
such as 14−14−15 and 22−22−23.

2.8 Latin squares

Latin squares play an important rôle in the design of statistical experiments
and many related problems ([CD96]):

Definition 2.10. A Latin square of order n is an n×n array in which each
cell contains a single symbol from a set S with n elements, such that each
symbol occurs exactly once in each row and exactly once in each column.

Example 2.6. Fig. 2.3 (a) shows a Latin square of order 3.

Various experiments can be scheduled with the help of Latin squares.
For example, suppose you want to compare 9 laptops, 3 each from 3 differ-
ent vendors, testing one of each vendor with each of 3 different operating

12

2.8 Latin squares

systems. Let vendors correspond to columns, operating systems to rows,
and the numbers in the Latin square of Fig. 2.3 (a) to different testers. If
you now select, for each of the 3 different testers, the laptops and operating
systems that carry that tester’s number, then you obtain a schedule such
that one laptop from each vendor, and one of each of the operating systems
is tested by each tester. Also, the testers can do their work in parallel.

A single Latin square of order n solves the SGP instance n−n−1: Super-
impose n2 players on the square, with one player for each cell. The element
of each cell of the Latin square denotes into which group the corresponding
player should be scheduled. For example, in Fig. 2.3, the players whose cells
contain the value 2 in the Latin square (i.e., players 1, 5 and 6) play in
group 2 in the resulting schedule. Since the Latin square assigns a group
to each player, and all elements occur equally often, the resulting schedule
is valid. The converse does not hold though. As Fig. 2.4 shows, a valid
schedule of the SGP instance n−n−1 need not correspond to a Latin square
for all superimposed player arrays, since players that occur in the same row
of the superimposed array can also play in the same group.

1 2 3

3 1 2

2 3 1

(a)

0 1 2

3 4 5

6 7 8

(b)

Group 1

Group 2

Group 3

Week 1

0 4 8

1 5 6

2 3 7

(c)

Figure 2.3: (a) Latin square of order 3, (b) superimposed players, (c) induced
solution for the SGP instance 3−3−1

Group 1

Group 2

Group 3

Week 1

0 1 2

3 4 5

6 7 8

(a)

0 1 2

3 4 5

6 7 8

(b)

1 1 1

2 2 2

3 3 3

(c)

Figure 2.4: (a) A solution for the SGP instance 3−3−1, (b) superimposed
players, (c) induced assignment of players to groups

Clearly, it is trivial to construct a Latin square from scratch: For exam-
ple, start with any permutation of elements in the first row, and cyclically
shift all elements once to the right for the following rows. It is much harder to
decide whether a partially filled square can be completed to a Latin square.
This decision problem was proved to be NP-complete by Colbourn ([Col84]).
However, this does not immediately imply that the completion problem cor-
responding to the SGP is NP-complete as well, since – as shown above –
solutions for the SGP can be constructed that do not yield a Latin square.

13

2.9 The computational complexity of the SGP

2.9 The computational complexity of the SGP

Little is known about the computational complexity of the SGP. Some in-
stances are easily seen to be unsolvable, and some are easily solved with
construction methods. Here, we show that the completion problem corre-
sponding to the SGP, i.e., deciding whether a partially filled array can be
completed to a valid schedule, is NP-complete.

It is clear that the problem is in NP, since the validity of any schedule
can be verified in polynomial time in the size of the input. Essentially only
all pairs of players have to be checked.

To complete the proof of NP-completeness, we show that the problem is
also NP-hard. We reduce the completion problem of Latin squares, which
was shown to be NP-complete in [Col84], to the completion problem of SGP
instances: To check whether a partially filled n×n array S is completable to
a Latin square of order n, first construct two conflict-free weeks of the SGP
instance n−n−3 as follows: Construct the first week arbitrarily, for example,
by lining up the players in their natural order. Construct the second week
by transposing the first week. Fig. 2.5 shows the first two such weeks of
instance 4−4−3 built in this way.

Group 1

Group 2

Group 3

Group 4

Week 1 Week 2 Week 3

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

0 4 8 12

1 5 9 13

2 6 10 14

3 7 11 15

Figure 2.5: The first two weeks of instance 4−4−3

The third week is reserved for the partially filled square S: Superimpose
the player array of the first week onto S, and place the corresponding players
into groups of the third week as indicated by the filled cells of S. The
resulting partial array of the SGP instance n−n−3 can be completed to a
valid schedule iff S can be completed to a Latin square, thus making the
corresponding decision problem at least as hard.

Proof. Suppose S can be completed to a Latin square. Then its completion
certainly forms a valid week, for any superimposed array of all players. If
players are superimposed as in the first week of the schedule, it also contains
no conflicts with the first two weeks: Each player partners only players from
its own row or column in the first two weeks of the schedule, and a week
induced by a Latin square excludes those.

Conversely, suppose the partial array can be completed to a valid sched-
ule. Since each player partners all players from its own row and column in
the first two weeks, the induced group assignment of the third week must
exclude those and therefore completes S to a Latin square.

14

2.10 Orthogonal Latin squares

2.10 Orthogonal Latin squares

In order to use Latin squares to construct SGP solutions for several weeks,
it is useful to define a relation called orthogonality between pairs of Latin
squares ([LR97]):

Definition 2.11. Two Latin squares A = (aij) and B = (bij) of order n are
orthogonal if all ordered pairs (akl, bkl) are distinct. Stated in another way,
if aij and akl are the same for two different cells of A, then bij must differ
from bkl.

The concept of orthogonality was first formalised by Euler in [Eul82],
where he posed the following question:

Can 36 officers be arranged in a 6×6 square such that each of
6 regiments and each of 6 ranks appear in each row and column
exactly once?

This has become known as “Euler’s officer problem” and asks essentially
for two orthogonal Latin squares of order 6. Euler correctly conjectured
that constructing two such Latin squares is impossible, which was shown by
Tarry in [Tar00]. Since Euler used Greek and Latin letters for orthogonal
Latin squares, they are also known as Graeco-Latin squares.

A set of Latin squares is mutually orthogonal if they are orthogonal in
pairs. Mutually orthogonal Latin squares (MOLS) are used in the design of
statistical experiments, as well as for other purposes, such as authentication
and encoding ([Dou94], [HBC70]). MOLS can also be interpreted as solu-
tions for SGP instances, by letting each of the squares form a single week as
explained in Section 2.8, using the same array of superimposed players for
each week. An example is shown in Fig. 2.6, where the players were super-
imposed as in Fig. 2.4 (b). Orthogonality ensures that two players cannot
be scheduled in the same group more than once.

1 2 3

3 1 2

2 3 1

1 2 3

2 3 1

3 1 2

(a)

Group 1

Group 2

Group 3

Week 1 Week 2

0 4 8

1 5 6

2 3 7

0 5 7

1 3 8

2 4 6

(b)

Figure 2.6: (a) 2 orthogonal Latin squares of order 3, (b) correspond-
ing solution for the SGP instance 3−3−2, if players are superimposed as
in Fig. 2.4 (b)

Importantly, both the reference array and its transpose can be added
to a schedule induced by a set of MOLS without causing conflicts, since
the players in the same row or column of the reference array cannot play

15

2.10 Orthogonal Latin squares

together in any week stemming from a Latin square. The following property
holds ([HW05], [DH05]):

Lemma 2.2. A set of k MOLS of order n is equivalent to a solution of the
SGP instance n−n−(k + 2).

Applying Tarry’s result yields the following well-known theorem:

Theorem 2.9. The SGP instance 6−6−4 cannot be solved.

To further benefit from the connection between the SGP and MOLS,
it is useful to know how MOLS can be constructed. Harvey and Winterer
have compared several construction methods for MOLS in [HW05], and we
now explain one of the methods they cite in more detail. First, we mention
an upper bound on the maximal number of MOLS of order n, which is also
well-known ([And97], [LR97]):

Proposition 2.3. LetN(n) denote the maximal cardinality of a set of MOLS
of order n. Then N(n) ≤ n− 1.

This upper bound motivates to the following definition ([LR97]):

Definition 2.12. A set of (n − 1) MOLS of order n is called complete.

Applying Lemma 2.2, we obtain:

Lemma 2.3. A complete set of MOLS of order n induces a solution for the
SGP instance n−n−(n+ 1).

The following is also well-known ([LR97]) and follows from our previous
observations:

Theorem 2.10. An affine plane of order n (and therefore, by Theorem 2.7,
a projective plane of order n) is equivalent to a complete set of MOLS of
order n.

We mentioned already that if n is a prime power, a finite projective
plane of order n exists, but did not explain how to construct such a plane.
In the following, we show how to construct a complete set of MOLS of
order n, if n is a prime power. Such a set induces an affine plane of order n
and thus a projective plane of order n, and simultaneously solves the SGP
instance n−n−(n + 1), justifying the following theorem:

Theorem 2.11. If n is a prime power, then the SGP instance n−n−(n+1)
can be solved.

The well-known construction ([CD96], [HW05]) is based on finite fields,
which are also called Galois fields in honour of Evariste Galois. Let GF(n) be
a finite field of order n. Such a field exists if n is a prime power, and there

16

2.11 Isomorphic designs

are several probabilistic and deterministic algorithms to construct such a
field (see [Sho94] and the references included therein). For each α ∈ GF(n),
α 6= 0, let Lα(i, j) = αi+ j for all i, j ∈ GF(n), and with multiplication and
addition as defined in GF(n). Then the set {L1, L2, . . . , Ln−1} is a complete
set of MOLS of order n.

Proof. It is easy to see that each Li is a Latin square of order n. We prove
that these Latin squares are mutually orthogonal: Suppose La(i1, j1) =
La(i2, j2) and Lb(i1, j1) = Lb(i2, j2) for 0 < a < b. Then, by construction
of La and Lb:

ai1 + j1 = ai2 + j2

bi1 + j1 = bi2 + j2

Rewriting yields:

(i1 − i2)a = (i1 − i2)b

Since a 6= b, i1 − i2 must be 0, thus i1 = i2 and therefore j1 = j2.

2.11 Isomorphic designs

In many cases, one is interested in whether two designs are isomorphic, i.e.,
structurally identical. This means that one can be obtained from the other
simply by renaming elements and reordering blocks. The following notion
allows to reduce isomorphism testing of designs to isomorphism testing of
graphs:

Definition 2.13. Let D = (V,B) be a design, where V = {x1, x2, . . . , xv}
are the points and B = {B1, B2, . . . , Bb} are the blocks. Let G(D) be a
graph with vertex set {x1, x2, . . . , xv, B1, B2, . . . , Bb}, with the element ver-
tices having one colour, and the block vertices having a second colour, and
undirected edge set {(xi, Bj) : xi ∈ Bj}. The graph G(D) is the Levi graph
of D.

The following holds ([CD96]):

Proposition 2.4. Designs D1 and D2 are isomorphic iff graphs G(D1) and
G(D2) are isomorphic.

We use this property in the next section, where we show that two cur-
rently known optimal solutions for the original SGP instance are isomorphic.

17

2.12 Solving the original SGP instance

2.12 Solving the original SGP instance

After the original SGP instance (8−4−w) was first posted to the discus-
sion group sci.op-research in 1998, a solution for 9 weeks was soon
found. It was also clear that no solution for 11 weeks could exist (see
Section 1.3). Whether there exists a solution for 10 weeks was an open
question for several years, until Alejandro Aguado constructed an explicit
solution for the 8−4−10 instance in 2004 ([Agu04]), using a result by Col-
bourn ([Col99]). There, Colbourn uses a combination of backtracking search,
instance-specific considerations and design theoretic techniques, and solves
the SGP instance 8−4−10 to obtain a certain different design that is the
main subject of his paper. According to Aguado, the connection between
Colbourn’s result and the SGP was pointed out by Alan C. H. Ling.

Fig. 2.7 shows Aguado’s solution for the 8−4−10 instance ([Agu04]). A
different solution for this instance was posted by Andrew John Sadler to the
discussion group comp.constraints, and we show it in Fig. 2.8. To test
whether these designs are isomorphic, we use an obvious extension of the
Levi graph and Proposition 2.4: We introduce a third colour for weeks, and
connect the vertex corresponding to a group gj to the vertex corresponding
to a week wk iff gj is a group that occurs in wk. Using McKay’s dreadnaut
program ([McK90]), we have found that these two designs are isomorphic,
and we show a structure-preserving bijection between the 122 vertices of
their extended Levi graphs in Fig. 2.9. The vertices are numbered as follows
for each of the two designs: Vertices 0–31 represent the players, in their
natural order. Notice that while the two solutions use different origins for
player numbers (0 and 1, respectively), both Levi graphs start with vertex 0.
Vertices 32–111 correspond to groups, lined up week after week in their nat-
ural order, and vertices 112–121 are reserved for weeks, also in their natural
order. For example, from Fig. 2.9, player number 6 in Aguado’s solution
corresponds to player number 9 in the other solution, and player number 7
corresponds to player number 10. The group in which they play together
is the third group of the first week in both cases, as vertex number 34 is
mapped onto itself.

We add to these equivalent (up to isomorphism) solutions two new non-
isomorphic ones in Chapter 6.

2.13 Conclusion

When applicable, design theoretic techniques are often among the fastest
ways to solve a given SGP instance. However, they also have several draw-
backs. First, they are not generally applicable. While construction methods
and (in)existence results for many families of SGP instances are known and
have been presented, there is no known deterministic method that solves
any given SGP instance, or shows that it cannot be solved. Using the

18

2.13 Conclusion

Group 1

Group 2

Group 3

Group 4

Group 5

Group 6

Group 7

Group 8

Group 1

Group 2

Group 3

Group 4

Group 5

Group 6

Group 7

Group 8

Week 1 Week 2 Week 3 Week 4 Week 5

Week 6 Week 7 Week 8 Week 9 Week 10

0 1 2 3

4 5 22 23

6 7 20 21

8 25 26 27

9 10 11 24

12 13 15 30

14 28 29 31

16 17 18 19

0 4 8 28

1 6 18 23

2 7 17 22

3 5 26 31

9 13 14 27

10 15 19 21

11 25 29 30

12 16 20 24

0 11 14 21

1 7 10 28

2 15 20 25

3 13 22 24

4 9 18 31

5 16 27 30

6 8 19 29

12 17 23 26

0 18 24 27

1 9 19 26

2 8 11 16

3 10 17 25

4 7 12 29

5 6 14 15

13 20 23 28

21 22 30 31

0 6 13 26

1 4 11 15

2 9 21 28

3 8 14 23

5 12 18 25

7 19 24 30

10 16 22 29

17 20 27 31

0 7 25 31

1 5 24 29

2 12 14 19

3 18 28 30

4 6 10 27

8 13 17 21

9 15 16 23

11 20 22 26

0 5 19 20

1 14 22 25

2 23 27 29

3 4 16 21

6 9 17 30

7 11 13 18

8 10 12 31

15 24 26 28

0 15 17 29

1 13 16 31

2 4 26 30

3 6 11 12

5 7 8 9

10 14 18 20

19 22 27 28

21 23 24 25

0 9 12 22

1 8 20 30

2 5 10 13

3 7 15 27

4 14 17 24

6 16 25 28

11 19 23 31

18 21 26 29

0 10 23 30

1 12 21 27

2 6 24 31

3 9 20 29

4 13 19 25

5 11 17 28

7 14 16 26

8 15 18 22

Figure 2.7: Aguado’s solution for the 8−4−10 instance ([Agu04])

Group 1

Group 2

Group 3

Group 4

Group 5

Group 6

Group 7

Group 8

Group 1

Group 2

Group 3

Group 4

Group 5

Group 6

Group 7

Group 8

Week 1 Week 2 Week 3 Week 4 Week 5

Week 6 Week 7 Week 8 Week 9 Week 10

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

17 18 19 20

21 22 23 24

25 26 27 28

29 30 31 32

1 5 13 26

2 8 9 31

3 7 10 30

4 6 15 28

11 20 21 29

12 18 23 32

14 19 24 27

16 17 22 25

1 7 17 21

2 11 13 24

3 6 18 22

4 10 16 23

5 20 25 30

8 19 28 32

9 14 26 29

12 15 27 31

1 6 11 32

2 7 14 25

3 8 16 27

4 5 12 29

9 17 24 30

10 19 22 31

13 18 21 28

15 20 23 26

1 8 18 24

2 12 16 21

3 9 20 28

4 11 17 27

5 14 22 32

6 19 26 30

7 13 23 31

10 15 25 29

1 9 15 22

2 5 19 23

3 12 17 26

4 8 13 25

6 14 21 31

7 18 27 29

10 20 24 32

11 16 28 30

1 12 19 25

2 10 18 26

3 11 14 23

4 7 20 22

5 17 28 31

6 16 24 29

8 15 21 30

9 13 27 32

1 10 14 28

2 6 20 27

3 21 25 32

4 24 26 31

5 9 16 18

7 11 15 19

8 17 23 29

12 13 22 30

1 16 20 31

2 15 17 32

3 13 19 29

4 14 18 30

5 10 21 27

6 9 23 25

7 12 24 28

8 11 22 26

1 23 27 30

2 22 28 29

3 5 15 24

4 9 19 21

6 10 13 17

7 16 26 32

8 12 14 20

11 18 25 31

Figure 2.8: A solution for the 8−4−10 instance, taken from
comp.constraints. It is isomorphic to Aguado’s solution.

19

2.13 Conclusion

6 ↔ 8, 7 ↔ 9, 8 ↔ 12, 9 ↔ 16, 10 ↔ 17, 11 ↔ 18, 12 ↔ 20, 13 ↔ 21, 14 ↔ 24,
15↔ 22, 16↔ 28, 17↔ 29, 18↔ 30, 19↔ 31, 20↔ 10, 21↔ 11, 22↔ 6, 23↔ 7,
24 ↔ 19, 25 ↔ 13, 26 ↔ 14, 27 ↔ 15, 28 ↔ 25, 29 ↔ 26, 30 ↔ 23, 31 ↔ 27,
44 ↔ 47, 47 ↔ 44, 48 ↔ 88, 49 ↔ 89, 50 ↔ 90, 51 ↔ 91, 52 ↔ 92, 53 ↔ 93,
54 ↔ 95, 55 ↔ 94, 56 ↔ 96, 57 ↔ 97, 58 ↔ 98, 59 ↔ 99, 60 ↔ 100, 61 ↔ 101,
62 ↔ 103, 63 ↔ 102, 64 ↔ 72, 65 ↔ 73, 66 ↔ 74, 67 ↔ 75, 68 ↔ 76, 69 ↔ 78,
70 ↔ 77, 71 ↔ 79, 72 ↔ 80, 73 ↔ 81, 74 ↔ 82, 75 ↔ 83, 76 ↔ 84, 77 ↔ 87,
78 ↔ 86, 79 ↔ 85, 80 ↔ 48, 81 ↔ 49, 82 ↔ 50, 83 ↔ 51, 84 ↔ 52, 85 ↔ 53,
86↔ 54, 87↔ 55, 88↔ 104, 89↔ 105, 90↔ 106, 91↔ 107, 92↔ 108, 93↔ 111,
94 ↔ 109, 95 ↔ 110, 96 ↔ 56, 97 ↔ 57, 98 ↔ 58, 99 ↔ 59, 100 ↔ 60, 101 ↔ 62,
102 ↔ 61, 103 ↔ 63, 104 ↔ 64, 105 ↔ 65, 106 ↔ 66, 107 ↔ 67, 108 ↔ 68,
109 ↔ 69, 110 ↔ 71, 111 ↔ 70, 114 ↔ 119, 115 ↔ 120, 116 ↔ 117, 117 ↔ 118,
118↔ 114, 119↔ 121, 120↔ 115, 121↔ 116

Figure 2.9: Isomorphism between the 122 vertices of the extended Levi
graphs of the two solutions for the 8−4−10 instance in Fig. 2.7 and 2.8.
Omitted vertices are mapped onto themselves.

SGP’s relation to Latin squares, we proved that its completion problem is
NP-complete. Clearly, an efficient method for deciding whether a partially
filled schedule can be completed to a valid one would also entail an efficient
method for solving all solvable instances: Simply try all players for one of
the free cells, and if the schedule can be completed with any player in that
place, fix this choice and apply the same strategy until no free cells remain.

Second, construction methods are generally unable to cope with partially
instantiated schedules, or even slight variations of the given constraints.
This can be a problem in practical applications, where further restrictions
or slightly different constraints will often have to be taken into account.

Finding a solution for an SGP instance n−n−(n + 1) (n > 1) where n
is not a prime power would settle an open question from finite geometry:
whether a finite projective plane whose order is not a prime power exists.

20

3 SAT formulations

3.1 Introduction

Since the SGP is in NP, and the Boolean satisfiability problem (SAT) is
complete for that complexity class, any SGP instance can be reduced to a
SAT instance. A SAT formulation for the SGP is proposed by Gent and
Lynce in [GL05] and [Lyn05].

In this chapter, we first present the SAT formulation for the SGP as
it appears in the literature. We find several omissions and mistakes in the
existing SAT formulation, which we correct. We then improve upon the
corrected formulation, and propose a different encoding that significantly
reduces the number of variables for all instances. We present experimen-
tal results obtained from using local search and complete backtracking to
solve several generated SAT instances that encode SGP instances. We show
that our formulation can lead to considerably improved running times when
solving SGP instances in this way.

3.2 Reasons for SAT formulations

SAT was the first problem proved to be NP-complete ([Coo71]) and plays
an important rôle in complexity theory for this reason. Since all problems
in NP can thus be expressed as SAT instances, the implementation of prac-
tical SAT solvers has received significant attention from researchers. Several
different strategies for solving SAT instances have been proposed, including
complete backtracking search ([DLL62]), local search ([SKC93]) and alge-
braic simplification techniques ([MS00]). Since SAT solvers have become
continuously faster as a result of these efforts and are often also freely avail-
able, it is attractive to try out SAT formulations where possible.

3.3 The SAT formulation by Gent and Lynce

Consider the general g−p−w instance of the SGP, with x = g×p the number
of golfers. For their SAT formulation in [GL05], Gent and Lynce introduce
variables Gijkl (1 ≤ i ≤ x, 1 ≤ j ≤ p, 1 ≤ k ≤ g and 1 ≤ l ≤ w) denoting
whether player i plays in position j in group k and week l. The constraints
are then imposed by a set of clauses ensuring that:

• Each player plays exactly once per week, i.e.:

– Each player plays at least once per week

– Each player plays at most once per week

• Each group consists of exactly p players, i.e.:

– At least one player is the jth golfer (1 ≤ j ≤ p)

21

3.3 The SAT formulation by Gent and Lynce

– At most one player is the jth golfer (1 ≤ j ≤ p)

• No two players play in the same group more than once

The following clauses ensure that each player plays at least once in each
week:

x
∧

i=1

w
∧

l=1

p
∨

j=1

g
∨

k=1

Gijkl (3.1)

To enforce that each player plays at most once each week, it is first
ensured that each player plays at most once per group in each week:

x
∧

i=1

w
∧

l=1

p
∧

j=1

g
∧

k=1

p
∧

m=j+1

¬Gijkl ∨ ¬Gimkl (3.2)

A second set of clauses is supposed to guarantee that no player plays in
more than one group in any week:

x
∧

i=1

w
∧

l=1

p
∧

j=1

g
∧

k=1

g
∧

m=k+1

p
∧

n=j+1

¬Gijkl ∨ ¬Ginml (3.3)

However, clause set (3.3) as proposed in [GL05] is incomplete, and we
return to it below. Taking our modification below into account, the clause
set (3.1)∪(3.2)∪(3.3) enforces that each player plays exactly once per week.

A similar set of clauses is introduced for groups of golfers:

w
∧

l=1

g
∧

k=1

p
∧

j=1

x
∨

i=1

Gijkl (3.4)

w
∧

l=1

g
∧

k=1

p
∧

j=1

x
∧

i=1

x
∧

m=i+1

¬Gijkl ∨ ¬Gimkl (3.5)

The set (3.4)∪ (3.5) is intended to yield valid groups, i.e., groups where
exactly one player is in position j for each 1 ≤ j ≤ p. We will return to this
clause set below as well.

The only constraint left to encode is “socialisation”, i.e., no two players
can play in the same group more than once. To express this constraint,
Gent and Lynce introduce a set of auxiliary variables and a so-called ladder
matrix. The auxiliary variables G′

ikl (1 ≤ i ≤ x, 1 ≤ k ≤ g and 1 ≤ l ≤ w)
denote whether player i plays in group k and week l. They are related to
the variables Gijkl via the equivalence:

G′
ikl ↔

p
∨

j=1

Gijkl (3.6)

22

3.3 The SAT formulation by Gent and Lynce

posted for all 1 ≤ i ≤ x, 1 ≤ k ≤ g and 1 ≤ l ≤ w.
The ladder matrix is a

(

x
2

)

× (g×w) array of propositional variables de-
noted by Ladderyz. A complete assignment of the ladder variables is said
to be valid iff every row is a sequence of zero or more True assignments fol-
lowed by only False assignments. To enforce this, Gent and Lynce propose
the set of clauses:

(x
2
)−1
∧

y=1

g×w
∧

z=1

¬Ladderyz+1 ∨ Ladderyz (3.7)

We will return to this clause set below. For now, we illustrate the in-
tention of the ladder matrix with an example given in Fig. 3.1. It is taken
from [GL05] and corresponds to the schedule shown in Fig. 3.2. Each row
of the matrix corresponds to a pair of golfers. In each row, the column of
the rightmost True value, if any, denotes the group in which the respective
two golfers play together. We highlight the rightmost True value of each
row using a bold T. Obviously, at most one True assignment can be the
rightmost one in each row. Therefore, each pair of players can occur in at
most one group.

1.1 1.2 2.1 2.2 3.1 3.2

3.4 T T F F F F
2.3 T T T T T T
2.4 T T T T F F
1.2 T F F F F F
1.3 T T T F F F
1.4 T T T T T F

Figure 3.1: Ladder matrix for the schedule of Fig. 3.2

Group 1

Group 2

Week 1 Week 2 Week 3

1 2

3 4

1 3

2 4

1 4

2 3

Figure 3.2: Schedule corresponding to the ladder matrix of Fig. 3.1

The remaining sets of clauses relate the auxiliary variables G′
ikl with the

ladder variables. If two golfers i and m play in the same group, i.e., G′
ikl ∧

G′
mkl is true for i < m, then, according to [GL05], Ladder[(x−i

2
)+m−i](l×k)

must be True and Ladder[(x−i

2
)+m−i](l×k+1) must be False, and con-

versely. Formally, they propose the following sets of clauses:

w
∧

l=1

g
∧

k=1

x−1
∧

i=1

x
∧

m=i+1

¬G′
ikl ∨ ¬G

′
mkl ∨ Ladder(x−i

2
)+m−i,l×k

(3.8)

23

3.4 Revisiting the SAT formulation by Gent and Lynce

w
∧

l=1

g
∧

k=1

x−1
∧

i=1

x
∧

m=i+1

¬G′
ikl ∨ ¬G

′
mkl ∨ ¬Ladder(x−i

2
)+m−i,l×k+1 (3.9)

w
∧

l=1

g
∧

k=1

x−1
∧

i=1

x
∧

m=i+1

Ladder(x−i

2
)+m−i,l×k+1 ∨ ¬Ladder(x−i

2
)+m−i,l×k

∨ ¬G′
ikl

(3.10)

w
∧

l=1

g
∧

k=1

x−1
∧

i=1

x
∧

m=i+1

Ladder(x−i

2
)+m−i,l×k+1 ∨ ¬Ladder(x−i

2
)+m−i,l×k

∨ ¬G′
mkl

(3.11)
We discuss these clauses in the next section.

3.4 Revisiting the SAT formulation by Gent and Lynce

In this section, we revisit the SAT formulation as proposed by Gent and
Lynce and correct some of its clauses, to enforce all desired constraints and
thus correctly model SGP instances as SAT instances.

Clauses (3.1) and (3.2) of the SAT formulation by Gent and Lynce are
correct. Clause set (3.3) is incomplete: n must range from 1 to p, instead of
from j + 1 to p. This is because a player that plays in week l at position j
of group k must not play in any other position for further groups of that
week l, not just positions greater than j. The correct encoding is thus:

x
∧

i=1

w
∧

l=1

p
∧

j=1

g
∧

k=1

g
∧

m=k+1

p
∧

n=1

¬Gijkl ∨ ¬Ginml (3.12)

Clause set (3.5) is slightly inaccurate: Gimkl must be changed to Gmjkl

to enforce the correct constraint, yielding:

w
∧

l=1

g
∧

k=1

p
∧

j=1

x
∧

i=1

x
∧

m=i+1

¬Gijkl ∨ ¬Gmjkl (3.13)

This is because the other order of these indices would not match the in-
tended usage of these variables. Interestingly, this typographical error could
have been found automatically, via a simple reasoning about the known
bounds of the variables’ indices.

Clause set (3.7) is also slightly inaccurate: y must range from 1 to
(

x
2

)

.
This is because the constraint must hold for all pairs of players, not just
every one except the last one, and yields:

24

3.4 Revisiting the SAT formulation by Gent and Lynce

(x
2
)

∧

y=1

g×w
∧

z=1

¬Ladderyz+1 ∨ Ladderyz (3.14)

It also becomes clear from this clause set that the ladder matrix is in
fact a

(

x
2

)

× (g × w + 1) matrix.
Further, it is easy to see that in the clauses of (3.10), ¬G′

ikl must be
replaced by its negation, G′

ikl. Similarly, ¬G′
mkl must be replaced by its

negation in the clauses of (3.11), yielding:

w
∧

l=1

g
∧

k=1

x−1
∧

i=1

x
∧

m=i+1

Ladder(x−i

2
)+m−i,l×k+1 ∨ ¬Ladder(x−i

2
)+m−i,l×k

∨G′
ikl

(3.15)

w
∧

l=1

g
∧

k=1

x−1
∧

i=1

x
∧

m=i+1

Ladder(x−i

2
)+m−i,l×k+1 ∨ ¬Ladder(x−i

2
)+m−i,l×k

∨G′
mkl

(3.16)
This is due to the intention that if adjacent cells of the ladder matrix

are True and False in some row, the two players corresponding to that
row should play together.

However, this is not all that needs to be changed to correctly model
the SGP. Consider the “solution” of the SGP instance 8−4−2 shown in
Fig. 3.3, in which conflict positions are highlighted. The configuration sat-
isfies all constraints corrected so far, yet still contains conflicts.

Group 1

Group 2

Group 3

Group 4

Group 5

Group 6

Group 7

Group 8

Week 1 Week 2

32 24 16 8

31 23 15 7

30 22 14 6

29 21 13 5

28 20 12 4

27 19 11 3

26 18 10 2

25 17 9 1

31 23 15 7

29 21 13 5

27 19 11 3

25 17 9 1

26 22 16 12

30 18 8 4

32 28 14 10

24 20 6 2

Figure 3.3: A “solution” for the 8−4−2 instance, conflicts highlighted

The location of conflict positions in Fig. 3.3 can give valuable indications
as to where the model went wrong. In this case, we expect the encoding
of socialisation to be wrong, since all other constraints are satisfied: Each
player plays exactly once each week, and all groups have the correct size.
The interesting pattern of conflict positions is due to the following problem
in the model: In clause sets (3.8)–(3.11), columns of the ladder matrix
are referenced by the terms (l × k) and (l × k + 1), with 1 ≤ l ≤ w and

25

3.5 Improving the SAT formulation by Gent and Lynce

1 ≤ k ≤ g. Clearly, each group should be assigned a distinct column in the
ladder matrix, but the way in which the running variables are combined to
form a column index does not guarantee that. For example, both the second
group of the first week, and the first group of the second week will evaluate
to column 1 × 2 = 2 × 1 = 2 of the ladder matrix. As a consequence, the
relevant constraints are not imposed on all groups.

To remedy this, we propose that the column index of group k in week l
be uniquely determined by the expression (l − 1) × g + k. This yields the
following revised versions of clause sets (3.8)–(3.11):

w
∧

l=1

g
∧

k=1

x−1
∧

i=1

x
∧

m=i+1

¬G′
ikl ∨ ¬G

′
mkl ∨ Ladder(x−i

2
)+m−i,(l−1)×g+k

(3.17)

w
∧

l=1

g
∧

k=1

x−1
∧

i=1

x
∧

m=i+1

¬G′
ikl ∨ ¬G

′
mkl ∨ ¬Ladder(x−i

2
)+m−i,(l−1)×g+k+1 (3.18)

w
∧

l=1

g
∧

k=1

x−1
∧

i=1

x
∧

m=i+1

Ladder(x−i

2
)+m−i,(l−1)×g+k+1

∨ ¬Ladder(x−i

2
)+m−i,(l−1)×g+k

∨G′
ikl (3.19)

w
∧

l=1

g
∧

k=1

x−1
∧

i=1

x
∧

m=i+1

Ladder(x−i

2
)+m−i,(l−1)×g+k+1

∨ ¬Ladder(x−i

2
)+m−i,(l−1)×g+k

∨G′
mkl (3.20)

This completes the corrected formulation.

3.5 Improving the SAT formulation by Gent and Lynce

Having presented a correct SAT formulation for the SGP, we now look for
ways to reduce computation time when solving SGP instances in practice.
There are various ways to do this, for example, by:

• reducing the number of variables
This reduces the number of possible assignments and thus leads to a
smaller search space.

• reducing the number of clauses
Fewer clauses means fewer constraints that need to be satisfied, in
effect turning more assignments into satisfying ones.

26

3.5 Improving the SAT formulation by Gent and Lynce

• imposing symmetry breaking constraints
This removes uninteresting (isomorphic) branches of the search tree
and can help a SAT solver to focus on more interesting parts of the
search space.

We consider symmetry breaking constraints in Section 3.7, and focus for
now on the first two options.

Our first observation regards the number of clauses: The revised ver-
sions of clause sets (3.10) and (3.11), namely (3.19) and (3.20), are actually
not necessary: They can be omitted from the model without affecting the
correctness of the formulation. The sole purpose of the ladder matrix is
to reflect the fact that two players play in the same group. This means
that if two players play in the same group, we want the ladder matrix to
reflect that. If, on the other hand, a True and False value in the ladder
matrix are adjacent, then the corresponding players need not necessarily
play together in that group. This is due to the fact that our focus is on
the players, and the ladder matrix is only an auxiliary device that we use
for the specific purpose of enforcing the socialisation constraint. Other than
that, the ladder matrix is of no interest, and remaining cells can assume any
values. A similar observation holds for equivalence (3.6), where only the
right-to-left implication is of interest, and auxiliary variables can otherwise
assume any values. Reducing the number of clauses in this way can result
in significantly less computation time, but it can also have adverse effects
depending on the method used to solve an instance, and we therefore keep
equivalence (3.6).

To reduce the number of variables for each instance, we eliminate the
ladder matrix entirely. Instead of equations (3.7)–(3.11), we propose a dif-
ferent way to encode the desired socialisation constraint that lies at the core
of the SGP. The set of clauses we propose can be concisely described as:

w
∧

l=1

g
∧

k=1

x
∧

m=1

x
∧

n=m+1

g
∧

k′=1

w
∧

l′=l+1

(¬G′
mkl ∨ ¬G

′
nkl) ∨ (¬G′

mk′l′ ∨ ¬G
′
nk′l′) (3.21)

This states the socialisation constraint in a very straight-forward man-
ner: If two players m and n play in the same group k of a week l, then they
cannot play together in any group of further weeks.

This change of the formulation makes all Ladderxy variables unneces-
sary. For each SGP instance g−p−w, our formulation will therefore always
have exactly

(

g×p
2

)

× (g×w+1) fewer variables (i.e., exactly the number of
ladder variables) than the formulation proposed by Gent and Lynce. The
number of clauses can be less, equal, or more depending on the instance. In
the next section, we assess empirically what can be gained by our change of
the formulation.

27

3.6 Experimental results

3.6 Experimental results

We chose the two well-known instances 5−3−w and 8−4−w for benchmark-
ing, which we also consider quite representative for other instances.

All experiments were conducted on an Apple MacBook with a 2.16 GHz
Intel Core 2 Duo CPU and 1GB RAM. We used the two SAT solvers Walk-
sat 4.6 ([SKC93]) and SATO 4.2 ([Zha97]). Walksat uses local search, and
SATO uses the Davis-Putnam method. For SATO, we started the solver and
waited with a timeout of 20 minutes. For Walksat, we tried many options
and chose the cutoff in such a way that the program had about 20 minutes
to solve an instance. This is a reasonable time frame to be competitive, as
this is also the limit that was chosen in recently reported other approaches,
such as in [CDFH06].

Tables 3.1 and 3.2 show benchmark results with the (revised) SAT for-
mulation by Gent and Lynce and our formulation, respectively. For each
SGP instance, we show the number of variables and clauses of the generated
SAT instance. The “Walksat” column shows the average number of seconds
until a satisfying assignment was found in 10 tries. The “SATO” column
shows the number of seconds until a single solution was found, averaged
over 10 runs to reduce variance. The symbol “–” means that no solution
was found within the time limit.

Despite trying many different options with Walksat, we did not find
many solutions using the (revised) formulation by Gent and Lynce. In con-
trast, we could solve all given instances with Walksat’s “novelty” option and
a cutoff parameter of 107 by using our formulation.

It is clear from these figures that our formulation can result in large
performance improvements when solving SGP instances in practice. A SAT-
based approach towards the SGP thus seems now at least more promising
than previously, when results were much further from being competitive
with other approaches.

3.7 Symmetry breaking

Another strategy that can reduce computation time when solving SAT in-
stances in practice is to eliminate uninteresting branches of the search tree
by breaking some of the symmetries inherent to the underlying problem.
Clearly, the SGP is a highly symmetric problem: Players within groups,
groups within weeks, and weeks themselves can be reordered arbitrarily.
Yet, schedules with different orders of players within the same group lead to
distinct solutions in the SAT formulation above. Especially when using SAT
solvers that use a complete backtracking algorithm, it can help to eliminate
these symmetries and thus force the solver away from regions of the search
space that have already been considered in some variant. In [GL05], Gent
and Lynce propose the following set of clauses to break the symmetry among

28

3.7 Symmetry breaking

instance #Vs. #Cl. Walksat SATO

5−3−1 930 6105 0.00s 0.01s
5−3−2 1755 12210 0.02s 0.02s
5−3−3 2580 18315 – –
5−3−4 3405 24420 – –
5−3−5 4230 30525 – –
5−3−6 5055 36630 – –

8−4−1 5744 52928 – 0.06s
8−4−2 10992 105856 – 0.11s
8−4−3 16240 158784 – –
8−4−4 21488 211712 – –
8−4−5 26736 264640 – –
8−4−6 31984 317568 – –

Table 3.1: Revised formulation by Gent and Lynce

instance #Vs. #Cl. Walksat SATO

5−3−1 300 3480 0.00s 0.12s
5−3−2 600 9585 0.00s 0.01s
5−3−3 900 18315 0.00s 0.01s
5−3−4 1200 29670 0.01s 0.03s
5−3−5 1500 43650 2.42s 0.04s
5−3−6 1800 60255 98.94s –

8−4−1 1280 33088 0.00s 0.03s
8−4−2 2560 97920 0.01s 0.10s
8−4−3 3840 194496 0.05s 1.16s
8−4−4 5120 322816 0.75s –
8−4−5 6400 482880 0.98s –
8−4−6 7680 674688 198.92s –

Table 3.2: Our formulation

29

3.8 Experimental results again

players within each group:

x
∧

i=1

p
∧

j=1

g
∧

k=1

w
∧

l=1

i−1
∧

m=1

¬Gijkl ∨ ¬Gm(j+1)kl (3.22)

Clearly, j must in fact range from 1 to p − 1. Also, since the players
within each week must be distinct, m can range from 1 to i. With these
modifications, the clause set (3.22) ensures that the players within each
group are in strictly increasing numerical order.

All groups within a single week can be ordered by their first players, for
which Gent and Lynce propose the set of clauses:

x
∧

i=1

g
∧

k=1

w
∧

l=1

i−1
∧

m=1

¬Gi1kl ∨ ¬Gm1(k+1)l (3.23)

Again, k must actually range from 1 to g − 1, and m can range up to i.
From (3.22) and (3.23), it follows that player 1 is the first player of the first
group in each week. Using this fact, weeks can be ordered lexicographically
by the second golfer playing in the first group of each week. Gent and Lynce
propose the set of clauses:

x
∧

i=1

g
∧

k=1

w
∧

l=1

i−1
∧

m=1

¬Gi2kl ∨ ¬Gm2k(l+1) (3.24)

Again, l must actually range from 1 to w−1. Also, this set of clauses re-
moves more solutions than intended, as it erroneously enforces the constraint
for each group, instead of only the first group of each week. In addition,
we know that the second player in the first group must be distinct for each
week, since player 1 also plays in this week, and players cannot meet more
than once. We can therefore demand strictly ascending second players in
the first group of each week, by using instead the following set of clauses:

x
∧

i=1

w−1
∧

l=1

i
∧

m=1

¬Gi21l ∨ ¬Gm21(l+1) (3.25)

This completes the symmetry breaking constraints. We will encounter
them again when discussing a constraint-based approach in Section 4.8.2.

3.8 Experimental results again

It is well-known that symmetry breaking constraints can make it harder
for local search methods to find solutions (see [Pre01]), as they reduce the
number of solutions and thus the solution density. In contrast, solution
methods that involve backtracking search can greatly benefit from symmetry

30

3.9 More symmetry breaking

instance #Vs. #Cl. Walksat SATO

5−3−6 1800 70935 – 1m25.56s
5−3−7 2100 87885 – 3m5.79s

8−4−4 5120 389872 – 1.58s
8−4−5 6400 566832 – 3.64s
8−4−6 7680 775536 – 12.83s
8−4−7 8690 1015984 – 4m3.85s

Table 3.3: Our formulation, including symmetry breaking constraints

breaking constraints, and we thus expect a positive impact when using these
constraints together with the SATO solver.

We added the three symmetry breaking constraints of Section 3.7 to the
model we propose in Section 3.5, in the hope to further reduce computation
time and solve SGP instances that we previously could not solve within the
time limit.

Table 3.3 shows our results for those instances that could not be solved
previously. As can be seen, these results largely confirm our expectation:
Adding symmetry breaking clauses has a very positive effect for the back-
tracking solver SATO, with which we can now solve many more instances.
Kirkman’s schoolgirl problem, instance 5−3−7, can now be solved, and the
original SGP can be solved for up to 7 weeks.

When trying to solve instance 5−3−7 with all symmetry breaking con-
straints, SATO exited with the message “Bus error”. We then removed the
last two constraints, and broke only the symmetry arising from different
player orders within groups to solve this instance. All other instances could
be solved with all three symmetry breaking constraints.

As expected, adding symmetry breaking constraints has very adverse
effects for Walksat, which is based on local search. None of the instances
could be solved within the time limit, not even those that could be solved
before adding symmetry breaking clauses.

3.9 More symmetry breaking

The symmetry breaking constraints of Section 3.7 do not break all symme-
tries of solutions: In addition to the mentioned symmetries, players can be
renumbered arbitrarily. Thus, different permutations can still yield distinct
but isomorphic solutions. See [BB05] for an example.

In [FHK+02], a very different model for the SGP is proposed, which
allows to break much of this symmetry: Let Mw×g,g×p denote a matrix
of Boolean variables. Each column corresponds to a player, and each row
corresponds to one group. The Boolean value at position (i, j) denotes
whether player j plays in group i. The necessary constraints on M are
quite obvious. Much of the symmetry arising from player permutations

31

3.10 Working with SAT instances

can now be broken by imposing a lexicographic “less than” constraint on
columns. Similarly, the symmetry among groups can be broken by imposing
a lexicographic “less than” constraint on the rows corresponding to the
groups of each week. Unfortunately, this still does not remove all isomorphic
solutions: As shown in [FFH+02], lexicographically ordering both rows and
columns does not break all compositions of row and column symmetries.
As this model was also shown to suffer from overheads due to large arising
vectors in [FHK+02], we do not consider it further.

It is always possible to break all symmetries of a matrix of decision
variables with lexicographic constraints ([CGLR96]). However, since it is in
general necessary to add a super-exponential number of constraints, this is
often infeasible in practice.

3.10 Working with SAT instances

As demonstrated by the ample need for revision of previous models in this
chapter, working with SAT formulations is quite error-prone. This is because
the language of propositional logic is comparatively “low-level”: A very
limited number of primitive operations must be used to make all desired
constraints explicit.

As part of this thesis, we have implemented a domain-specific language
that makes working with SAT instances more convenient and less error-
prone. SAT instances in DIMACS format can be generated from a much
higher-level language that can express ranged disjunctions and conjunctions,
and symbolic variables with indices formed by arithmetic expressions. Per-
haps most importantly, our tools make it easy to extract all variables that
are assigned the value True in an assignment, and to project them back into
their symbolic forms. From this symbolic form, figures are readily generated,
and assignments can be verified easily.

For example, consider the Walksat output after solving instance 2−2−3,
shown in Fig. 3.4. Using our tools, this satisfying assignment for a previously
generated SAT instance can be projected back to the symbolic variables of
the original formulation. Fig. 3.5 shows the variables that are assigned the
value True in the assignment found by Walksat. From these variables, we
can easily generate Fig. 3.6, which in turn is readily seen to be a conflict-free
schedule for this instance.

Our approach is not limited to satisfying assignments. We can advise
Walksat to emit the current assignment every N steps and thus observe the
solution process arbitrarily closely. Fig. 3.7 shows the current assignment
after every 3000 steps, as Walksat solves instance 5−3−5. From such an-
imations, one can see which clauses are satisfied first, and which are only
satisfied towards the end. One can also compare the effects of different solver
options and problem formulations, and easily verify a solution’s correctness.

Finally, Fig. 3.8 shows the complete specification of the SGP as pro-

32

3.11 Conclusion

posed in this chapter (including symmetry breaking constraints), using our
domain-specific language. The syntax should be clear after comparing it to
the clause sets as they appear in this chapter, and we do not discuss it here
further. With the necessary additional (Prolog) definitions, which are freely
available from the author, this specification can be used to produce SAT
instances in DIMACS format.

3.11 Conclusion

The existence of freely available and continuously evolving SAT solvers
makes it attractive to try out SAT formulations for combinatorial problems
such as the SGP. In this chapter, we discussed an existing SAT formulation
for the SGP and revised some of its clauses. It is well known that the choice
of encoding can have a significant impact on performance, and we saw this
effect for a different encoding of the SGP that we proposed in this chapter.
Using our encoding can considerably reduce computation time when solving
SGP instances with common SAT solvers in practice.

Working with SAT instances is quite error-prone, as the ample need for
revision of an existing SAT encoding has shown. However, the tools we
developed as part of this thesis make working with SAT instances more
convenient. In particular, they make it easy to generate SAT instances in
DIMACS format from a higher-level language. After solving these instances
with a SAT solver, True variables can be projected back into their symbolic
forms. This makes it easier to verify results, and to generate customised
visualisations of solutions, which we highly recommend. These tools are
freely available from the author.

By adding symmetry breaking constraints, we solved Kirkman’s school-
girl problem, and the original SGP instance for up to 7 weeks with the freely
available complete SAT solver SATO. While this is not yet competitive with
other approaches that we discuss in this thesis, a SAT-based approach for
solving SGP instances is now at least more promising than previously, when
results were much further from being competitive.

33

3.11 Conclusion

1 Begin assign with lowest # bad = 0
2 −1 −2 −3 4 −5 6 −7 −8 −9 −10
3 −11 12 −13 14 −15 −16 17 −18 −19 −20
4 −21 22 −23 −24 25 −26 −27 −28 −29 −30
5 −31 32 −33 −34 35 −36 −37 −38 39 −40
6 −41 −42 43 −44 45 −46 −47 −48 −49 50
7 51 −52 −53 54 55 −56 57 −58 59 −60
8 61 −62 −63 64 −65 66 −67 68 −69 70
9 71 −72
10 End assign

Figure 3.4: Walksat output after solving instance 2−2−3

1 g(1, 2, 1, 1), g(1, 2, 1, 2), g(1, 1, 2, 3),
2 g(2, 2, 2, 1), g(2, 1, 1, 2), g(2, 1, 1, 3),
3 g(3, 1, 1, 1), g(3, 1, 2, 2), g(3, 2, 1, 3),
4 g(4, 1, 2, 1), g(4, 2, 2, 2), g(4, 2, 2, 3),
5 g(1, 1, 1), g(1, 1, 2), g(1, 2, 3),
6 g(2, 2, 1), g(2, 1, 2), g(2, 1, 3),
7 g(3, 1, 1), g(3, 2, 2), g(3, 1, 3),
8 g(4, 2, 1), g(4, 2, 2), g(4, 2, 3)

Figure 3.5: Turning True variables of Fig. 3.4 into their symbolic forms

Group 1

Group 2

Week 1 Week 2 Week 3

3 1

4 2

2 1

3 4

2 3

1 4

Figure 3.6: Visualising the solution of Fig. 3.4 and Fig. 3.5

34

3.11 Conclusion

Group 1

Group 2

Group 3

Group 4

Group 5

Week 1 Week 2 Week 3 Week 4 Week 5

2 2 1

1 1 4

1 1 3

1 1 1

1 2 5

2 1 1

2 2 4

1 5 5

1 2 3

1 4 4

2 1 2

2 3 1

3 1 1

1 1 2

3 2 4

1 2 1

3 6 3

1 1 2

1 5 4

1 1 7

1 2 1

4 3 1

1 4 1

2 1 6

1 2 2

(a)

Group 1

Group 2

Group 3

Group 4

Group 5

Week 1 Week 2 Week 3 Week 4 Week 5

11 11 2

10 4 13

7 15 3

12 5 6

8 14 1

4 6 7

15 5

12 14 13

9 11 3

1 2 10

11 15 10

12 8 7

4 9 5

1 13 6

2 14 3

2 7 4

 15 6

5 11 8

10 14 9

3 1 12

15 12 9

7 1 5

13 8 2

3 10 6

14 11 4

(b)

Group 1

Group 2

Group 3

Group 4

Group 5

Week 1 Week 2 Week 3 Week 4 Week 5

13 7 1

14 8 8

11 9 5

4 3 15

10 6 12

4 5 2

12 15 9

3 14 1

6 13 8

10 11 7

4 11 8

14 7 5

3 13 12

2 10 9

6 15 1

9 7 8

4 12 1

11 15 13

14 2 6

10 3 5

6 3 9

10 13 5

1 11 2

7 4 14

12 8 15

(c)

Group 1

Group 2

Group 3

Group 4

Group 5

Week 1 Week 2 Week 3 Week 4 Week 5

3 13 1

4 15 2

5 6 14

10 12

11 7 9

8 12 6

9 10 14

3 15 5

7 13 2

4 1 11

9 8 4

1 14 7

13 5 15

2 10 6

3 12 11

13 6 9

12 14 2

1 5 10

4 7 3

11 15 8

2 5 11

10 7

13 8 14

15 12 9

4 6 1

(d)

Group 1

Group 2

Group 3

Group 4

Group 5

Week 1 Week 2 Week 3 Week 4 Week 5

3 15 4

14 11 8

7 12 13

10 2 6

5 9 1

7 4 2

11 15 13

12 5 14

8 10 9

1 6 3

4 13 1

2 11 12

3 6 8

9 14 15

10 7 5

3 7 11

5 15 13

10 12 1

6 14 4

2 8

1 8 7

11 4 5

3 2 9

14 13 10

6 15 12

(e)

Group 1

Group 2

Group 3

Group 4

Group 5

Week 1 Week 2 Week 3 Week 4 Week 5

9 7 14

3 5 10

6 12 2

4 1 13

11 8 15

6 9 13

8 10 7

5 2 4

11 12 14

15 1 3

15 13 5

9 12 8

1 2 7

4 3 6

14 11 10

1 10 6

4 7 15

2 11 13

5 12 9

14 3 8

7 6 11

1 5 8

9 2 3

13 14 15

10 4 12

(f)

Group 1

Group 2

Group 3

Group 4

Group 5

Week 1 Week 2 Week 3 Week 4 Week 5

15 14 7

2 1 12

10 4 9

13 8

6 5 11

2 7 12

3 10 8

9 11 1

5 4 14

13 15 6

3 5 9

8 1 6

12 14 12

7 13 4

10 15 11

8 11 12

5 10 2

14 13 3

15 4 1

9 6 7

15 8 9

1 7 3

4 2 11

13 5 12

10 6 14

(g)

Group 1

Group 2

Group 3

Group 4

Group 5

Week 1 Week 2 Week 3 Week 4 Week 5

5 15 1

2 3 7

4 14 9

12 6 13

10 11 8

15 10 2

6 14 5

8 4 1

11 13 3

7 9 12

6 3 15

10 7 1

11 9 14

13 4 2

5 12 8

5 10 3

15 4 12

7 14 8

6 2 11

9 13 1

9 5 2

8 13

6 3 4

12 1 14

11 7 15

(h)

Group 1

Group 2

Group 3

Group 4

Group 5

Week 1 Week 2 Week 3 Week 4 Week 5

10 11 9

15 1 4

13 3 6

5 14 7

12 8 2

3 15 8

1 9 12

5 10 7

2 4 13

6 11 14

11 3 1

14 4 7

9 8 13

5 12 15

10 2 6

3 14 10

5 4 8

1 6 7

15 2 9

11 12 13

3 9 4

11 14 8

13 15 10

7 2 6

5 12 1

(i)

Group 1

Group 2

Group 3

Group 4

Group 5

Week 1 Week 2 Week 3 Week 4 Week 5

6 10 12

13 3 4

15 5 1

11 14 7

8 9 2

8 4 6

12 3 7

10 11 5

13 15 2

9 14 1

1 4 2

11 6 15

7 13 9

12 8 5

14 10 3

6 5 14

2 10 7

4 9 11

3 15 8

12 1 13

8 14 13

1 6 3

15 10 9

12 2 11

5 4 7

(j)

Figure 3.7: Instance 5−3−5, configuration after (a) 0, (b) 3000, (c) 6000,
(d) 9000, (e) 12000, (f) 15000, (g) 18000, (h) 21000, (i) 24000, (j) 25539 flips
using Walksat, conflicts highlighted

35

3.11 Conclusion

1 golf(G, P, W) :−
2 make_lookup(G, P, W, L),
3 assoc_to_list(L, Ls),
4 length(Ls, Order),
5 format("p cnf ~w \n", [Order]),
6 X is P * G,
7 emit(^(i = 1 to X,
8 ^(l = 1 to W,
9 v(j = 1 to P,
10 v(k = 1 to G,
11 g(i,j,k,l))))), L),
12 emit(^(i = 1 to X,
13 ^(l = 1 to W,
14 ^(j = 1 to P,
15 ^(k = 1 to G,
16 ^(m = j+1 to P,
17 g(i,j,k,l) => \g(i,m,k,l)))))), L),
18 emit(^(i = 1 to X,
19 ^(l = 1 to W,
20 ^(j = 1 to P,
21 ^(k = 1 to G,
22 ^(m = k+1 to G,
23 ^(n = 1 to P,
24 g(i,j,k,l) => \g(i,n,m,l))))))), L),
25 emit(^(l = 1 to W,
26 ^(k = 1 to G,
27 ^(j = 1 to P,
28 v(i = 1 to X,
29 g(i,j,k,l))))), L),
30 emit(^(l = 1 to W,
31 ^(k = 1 to G,
32 ^(j = 1 to P,
33 ^(i = 1 to X,
34 ^(m = i+1 to X,
35 g(i,j,k,l) => \g(m,j,k,l)))))), L),
36 emit(^(l = 1 to W,
37 ^(k = 1 to G,
38 ^(j = 1 to P,
39 ^(i = 1 to X,
40 g(i,j,k,l) => g(i,k,l))))), L),
41 emit(^(l = 1 to W,
42 ^(k = 1 to G,
43 ^(i = 1 to X,
44 g(i,k,l) => v(j = 1 to P,
45 g(i,j,k,l))))), L),
46 emit(^(l = 1 to W,
47 ^(k = 1 to G,
48 ^(m = 1 to X,
49 ^(n = m+1 to X,
50 ^(kp = 1 to G,
51 ^(lp = l+1 to W,
52 g(m,k,l) ^ g(n,k,l) =>
53 \ (g(m,kp,lp) ^ g(n,kp,lp)))))))), L),
54 emit(^(i = 1 to X,
55 ^(j = 1 to P−1,
56 ^(k = 1 to G,
57 ^(l = 1 to W,
58 ^(m = 1 to i,
59 g(i,j,k,l) => \g(m,j+1,k,l)))))), L),
60 emit(^(i = 1 to X,
61 ^(k = 1 to G−1,
62 ^(l = 1 to W,
63 ^(m = 1 to i,
64 g(i,1,k,l) => \g(m,1,k+1,l))))), L),
65 emit(^(i = 1 to X,
66 ^(l = 1 to W−1,
67 ^(m = 1 to i,
68 g(i,2,1,l) => \g(m,2,1,l+1)))), L).

Figure 3.8: A SAT formulation for the SGP in our domain-specific language

36

4 Constraint programming formulations

4.1 Introduction

Constraint programming (CP) is a declarative formalism that lets users
specify conditions a solution should satisfy. Based on that description, a
constraint solver can then search for solutions.

In this chapter, we discuss two existing constraint-based formulations
of the SGP, both of which can solve the original SGP for a maximum of
9 weeks. One of the formulations is written by Stefano Novello, using the
free CP platform ECLiPSe ([WNS97]). The other formulation is written by
Mats Carlsson and uses the commercial Prolog system SICStus Prolog. We
build a new finite domain constraint solver out of the desire to run Carlsson’s
formulation in a free environment. Guided by animations of the constraint
solving process, we are able to solve instance 8−4−9 with our solver as well.
We also present benchmark results for several other instances.

4.2 Constraint logic programming

The first ideas for CP date back to the sixties and seventies ([Sut63]), with
the scene labelling problem ([Wal75]) being one of the first constraint satis-
faction problems (CSPs) that were formalised. A CSP consists of:

• a set X of variables, X = {x1, . . . , xn}

• for each variable xi, a set D(xi) of values that xi can assume, which
is called the domain of xi

• a set of constraints, which are simply relations among variables in X,
and which can further restrict their domains

One key observation, made by Jaffar, Lassez ([JL87]), Gallaire ([Gal85])
and others, was the insight that pure logic programming (LP) can be re-
garded as an instance of constraint solving, namely as solving constraints
over variables whose domains are Herbrand terms. In addition, LP and CP
share an important intention, which is to make users less concerned about
how a problem should be solved, and instead let them focus on a clear de-
scription of what should be solved. From that description, a logic engine
or constraint solver can, in principle, compute a solution without additional
instructions. Therefore, logic programming languages like Prolog have be-
come the most important host platforms for constraint solvers, and most
Prolog implementations nowadays ship with several libraries for constraint
programming. When CP is used with a logic programming language as
its host, it is referred to as constraint logic programming (CLP). However,
constraint programming is not restricted to CLP: It is possible to embed
constraint solvers in other host languages, even if they might not blend in
as seamlessly as they do with Prolog.

37

4.3 CLP(FD)

4.3 CLP(FD)

In connection with combinatorial optimisation or completion problems such
as the SGP, one of the most frequently used instances of constraint pro-
gramming is constraint logic programming over finite domains, denoted as
CLP(FD). This means that all domains are finite sets of integers, and the
available constraints include at least the common arithmetic relations be-
tween integer expressions.

One advantage when reasoning over integers is that many known laws
of arithmetic can be used to further reduce the domains of variables that
participate in the provided relations. Another advantage is that there is a
predefined total order over the integers, which can often help to eliminate
uninteresting symmetries between solutions and reduce the search space.

CLP(FD) can also help to solve problems over rational numbers. The
following example is known as the “7-11 problem” ([PG83]):

Example 4.1. The total price of 4 items is e 7.11. The product of their
prices is e 7.11 as well. What are the prices of the 4 items?
Answer. The prices are e 3.16, e 1.50, e 1.25 and e 1.20. A CLP(FD)
solution for this problem is shown in Fig. 4.1. Line 1 states the domain of
all variables, lines 2 and 3 post the two known constraints. The product
of all variables equals a quite large constant, which many constraint solvers
have problems with. In fact, the problem is already beyond the current
capabilities of the SICStus CLP(FD) solver on still common 32-bit plat-
forms, while our solver can easily cope with it. Line 4 imposes additional
constraints to break symmetries between values. Finally, line 5 searches for
valid ground instantiations of all variables, using a strategy which we explain
in Section 4.6. Notice that other constraints could be imposed as well. For
example, due to the fundamental theorem of arithmetic, the factorisation
of one of the variables must contain one of the prime factors of 711 × 1003.
However, imposing such a constraint would in general also require weakening
the ordering relation, and it is not a priori clear which of the formulations
is better.

1 ?− Vs = [A,B,C,D], Vs ins 0..711,
2 A * B * C * D #= 711*100^3,
3 A + B + C + D #= 711,
4 A #>= B, B #>= C, C #>= D,
5 labeling([ff], Vs).

Figure 4.1: Solving the 7-11 problem with a single query

4.4 Example: Sudoku

In the recent past, a combinatorial number puzzle called Sudoku has at-
tracted significant attention. A Sudoku Latin square is a particular kind of

38

4.5 Constraint propagation and search

1 sudoku(Rows) :−
2 length(Rows, 9), maplist(length_(9), Rows),
3 append(Rows, Vs), Vs ins 1..9,
4 maplist(all_different, Rows),
5 transpose(Rows, Columns), maplist(all_different, Columns),
6 Rows = [A,B,C,D,E,F,G,H,I],
7 blocks(A, B, C), blocks(D, E, F), blocks(G, H, I).
8

9 length_(N, Ls) :− length(Ls, N).
10

11 blocks([], [], []).
12 blocks([A,B,C|Bs1], [D,E,F|Bs2], [G,H,I|Bs3]) :−
13 all_different([A,B,C,D,E,F,G,H,I]),
14 blocks(Bs1, Bs2, Bs3).

Figure 4.2: A CLP(FD) description of Sudoku Latin squares

Latin square ([CD96], see also Section 2.8):

Definition 4.1. Let a, b and n be positive integers with a×b = n. Partition
an n×n array into a×b rectangles. An (a, b)-Sudoku Latin square is a Latin
square on the symbol set {1, . . . , n} where each (a, b)-rectangle contains all
symbols. A Sudoku Latin square is a (3, 3)-Sudoku Latin square.

Definition 4.2. An (a, b)-Sudoku critical set is a partial Latin square P
that is completable in exactly one way to an (a, b)-Sudoku Latin square,
and removal of any of the filled cells from P destroys the uniqueness of
completion.

Fig. 4.2 shows a CLP(FD) formulation for Sudoku Latin squares. Here, a
Sudoku Latin square is modelled as a list of rows, with each row being a list
of variables with domain {1, . . . , 9}. Line 2 ensures the correct list structure,
which makes it possible to use the predicate in all directions: One can use
the specification to test and complete partially filled squares as well as to
enumerate all possible squares. The only constraint used in this formulation
is the built-in constraint all different, which imposes pairwise inequalities
between all variables occurring in a list. The constraint is imposed for each
row (line 4), column (line 5), and 3× 3-subsquare (lines 6, 7 and 11–14).

A valid Sudoku puzzle as commonly found in contemporary newspa-
pers and periodicals is a partial Latin square that is completable in exactly
one way to a Sudoku Latin square. Fig. 4.3 (a) shows an example of a
valid Sudoku puzzle, which is simultaneously a (3, 3)-Sudoku critical set. In
fact, the figure shows one of the “hardest” currently known Sudoku puzzles:
No (3, 3)-Sudoku critical set with fewer than 17 given numbers is currently
known ([CD96]). Fig. 4.3 (b) shows the Sudoku Latin square that is uniquely
determined by this Sudoku critical set.

4.5 Constraint propagation and search

An element v of a domain D(x) is said to be inconsistent with respect to a
given CSP if there is no solution in which x assumes the value v. A CSP

39

4.5 Constraint propagation and search

1

2 7 4

5 4

3

7 5

9 6

4 6

7 1

1 3

(a)

1 8 4 9 6 3 7 2 5

5 6 2 7 4 8 3 1 9

3 9 7 5 1 2 8 6 4

2 3 9 6 5 7 1 4 8

7 5 6 1 8 4 2 9 3

4 1 8 2 3 9 6 5 7

9 4 1 3 7 6 5 8 2

6 2 3 8 9 5 4 7 1

8 7 5 4 2 1 9 3 6

(b)

Figure 4.3: (a) A (3, 3)-Sudoku critical set, and (b) the induced Sudoku
Latin square

is said to be globally consistent if none of its domains contains an inconsis-
tent element. Guaranteeing global consistency is computationally infeasible
in general, and constraint solvers therefore rely on local consistency tech-
niques that are computationally less expensive at the cost of not necessarily
reaching a globally consistent state.

Consistency techniques were introduced in [Wal75] and are derived from
graph notions (see [Bar99]). The process of deterministically ensuring some
form of consistency is called constraint propagation. Since propagation alone
is typically insufficient to reduce all domains to singleton sets and thus pro-
duce concrete solutions, some form of search is necessary as well. System-
atically trying out values for variables is called labeling, and we discuss it in
the next section. As soon as a variable is labeled, constraint propagation is
used to further prune the search space. Conversely, propagation can in itself
yield a singleton set for a variable’s domain, thus causing the variable to
be instantiated to a ground value. Search and propagation are therefore in-
terleaved when solving a CSP. Clearly, a trade-off must be reached between
strong propagation, implying great reduction of the search space for some
problems, and computational tractability.

As an example for different consistency notions, consider again Sudoku
puzzles. In this case, the search space is often quite large when traversed
naively. However, a constraint solver is typically able to delete many values
from the domains of those variables that correspond to free cells before the
search even begins. To give a visual impression of the values that can be
removed from domains, we proceed as follows: First, we subdivide all free
cells into 9 small regions as shown in Fig. 4.4. Each region corresponds to
the domain element that it contains in this figure. Then, a dot is drawn
in those regions that correspond to domain elements which can be excluded

40

4.6 Selection strategies for variables and values

1 2 3

4 5 6

7 8 9

Figure 4.4: Subdivision of a single cell

1

2 7 4

5 4

3

7 5

9 6

4 6

7 1

1 3

(a)

1

2 7 4

5 4

3

7 5

9 6

4 6

7 1

1 3

(b)

Figure 4.5: Domain elements that can be removed after posting the Sudoku
puzzle with (a) a bounds consistent constraint solver and (b) our solver

due to the given constraints. Fig. 4.5 shows which values can be excluded by
two different constraint solvers without performing any search. Fig. 4.5 (a)
was created with a bounds consistent solver, and Fig. 4.5 (b) was created
with our solver, which is arc consistent. A solver with perfect propagation
would reduce all domains to singleton sets in this case, making further search
unnecessary.

4.6 Selection strategies for variables and values

When searching for solutions of a CSP by trying ground values for variables,
there are at least two degrees of freedom: First, the instantiation order of
variables. Second, the order in which values are tried for each variable.
Choosing good orders can significantly reduce computation time.

We first discuss the impact of variable instantiation orders. Fig. 4.6
depicts two possible search tree shapes arising from complete enumerations
of two unconstrained variables, X and Y , with domains of size 2 and 5,
respectively. The order or type of actual values that are tried for each
variable is currently of no concern, as we focus on the order in which the
variables themselves are instantiated. Inner nodes of the search tree, which

41

4.6 Selection strategies for variables and values

X

Y Y

(a)

Y

X X X X X

(b)

Figure 4.6: Search tree shapes arising from different instantiation orders

are the variables, are shown as circles, and leaves are shown as boxes. When
a leaf is reached in the search process, all variables are instantiated. Clearly,
the number of leaves must be the same for all possible shapes of the search
tree, while the number of inner nodes can obviously differ significantly.

In typical CSPs, many values can turn out to be infeasible. In fact, a
significant number of subtrees of the search tree will often turn out to be
of no interest at all. We expect the greatest reduction of inner nodes that
must still be visited by first trying to instantiate the variable with the fewest
domain elements left. The strategy of instantiating the variables in order
of increasing size of domains is called “first-fail”, and often performs very
well in practice. The intention here is twofold: First, variables with small
domains are likely to run out of domain elements, causing their instantia-
tion to fail. Clearly, it is advantageous to detect inevitable failure as early
as possible. Second, instantiating variables can only further constrain the
domains of remaining variables. Therefore, we want to instantiate variables
with small domains while that is still possible, since the situation can only
become worse for them. For a probabilistic analysis of the impact of this
strategy, see [HE80].

Constraint solvers typically provide several pre-defined variable selection
strategies that users can choose from, and which can influence computation
time considerably. Our solver provides the following strategies to instantiate
a list of variables (ties are broken by selecting the leftmost variable in the
list), which are also available in most other constraint solvers:

• leftmost
Instantiate the variables from left to right in the order they occur in
the given list.

• ff (“first-fail”)
Instantiate the variable with smallest domain next.

• ffc
Of the variables having smallest domains, the one involved in most
constraints is instantiated next.

42

4.7 Visualising the constraint solving process

• min
Instantiate the variable whose lower bound is the lowest next.

• max
Instantiate the variable whose upper bound is the highest next.

For most of these options, it is important to accurately assess a variable’s
current domain, and thus solvers with different propagation strengths can
lead to very different instantiation orders of variables. Somewhat counter-
intuitively, stronger propagation can even have an adverse effect in this case.
This was first pointed out in [SF94] and can be explained by the fact that
stronger propagation can also lead an instantiation strategy away from a
“good” ordering, since propagation affects the variables’ domains and thus
the selected variable for many of these options.

After having selected a variable x for instantiation, a constraint solver
must choose a value fromD(x) that should be assigned to x. A good strategy
is often to instantiate x to a value of its domain which constrains the re-
maining variables the least. However, determining which of the values have
this property can be costly, and many constraint solvers therefore do not
provide this option. Our solver only provides two value selection strategies:

• up
The values of each domain are tried in ascending order.

• down
The values are tried in descending order.

In addition to these pre-defined selection strategies and value ordering
options, users are free to implement their own allocation strategies. We re-
gard this as one of the great advantages of constraint-based approaches over
other methods: Once all constraints are stated, variables can be instanti-
ated in any order and to any values, and infeasible choices are automatically
rejected.

4.7 Visualising the constraint solving process

In many cases, it is very interesting to visualise the constraint solving process
graphically. At the very least, one can get an impression of how the search
progresses. Based on that observation, one can then try different allocation
strategies, which sometimes work much better than others.

Transparent constraint animations have not received much attention in
the literature so far: In [NRS97], Neumerkel et al. explain the importance
of visualisations in the context of GUPU, a teaching environment for Pro-
log. However, they do not mention the potential usefulness of visualisa-
tions for deducing alternative strategies. Fages et al. present a graphical

43

4.7 Visualising the constraint solving process

user interface for CLP in [FSC04]. Their approach typically requires several
changes in the actual program code to obtain visualisations. In addition, it is
hard to customise towards problem-specific visualisations. Finally, Ducassé
and Langevine present abstract visualisations generated from an automated
analysis of execution traces in [DL02]. This requires a rather involved event
filtering and transformation scheme.

We now adapt the approach proposed in [NRS97] to the free Prolog
system SWI-Prolog and explain it in more detail than the authors them-
selves. Our intention is to make their very transparent and portable ap-
proach more widely accessible and understandable also for casual users of
constraint programming systems. We show that obtaining quite accurate
and highly customised animations of the constraint solving process need not
come at great expense. In addition, we show how valuable suggestions for al-
ternative approaches can be obtained by observing the animated constraint
solving process.

To focus on the main points involved when producing animations, we
use the so-called N -queens problem as a self-contained and simple example,
which is also presented in [NRS97]. The task is to place N queens on an
N × N chess board in such a way that no two queens attack each other,
which we call a consistent placement. Fig. 4.7 shows a consistent placement
of 8 queens.

Q

Q

Q

Q

Q

Q

Q

Q

Figure 4.7: A consistent placement of 8 queens

Fig. 4.8 shows a CLP(FD) formulation for the N -queens problem: We
use N variables Q1, . . . , QN , where Qi denotes the row number of the queen
in column i. Line 13 imposes the necessary constraints: The queens’ rows
must be pairwise distinct to forbid horizontal attacks, and diagonal attacks
are prohibited as well.

Fig. 4.9 shows how the CLP(FD) formulation can be transparently ex-
tended to emit PostScript instructions that visualise the constraint solving
process: For each value ni of the domain of queen Qj, a so-called reified
constraint of the form (Qj = ni) ↔ Bij is posted. Constraint reification is
a common feature of constraint solvers and lets us reflect the truth value of

44

4.8 CLP formulations for the SGP

many constraints into Boolean variables. When ni vanishes from the domain
of Qj , Bij becomes 0. In that case, PostScript instructions for graying out
the corresponding square are emitted. When Bij becomes 1, the equality
holds, and instructions for placing the queen are emitted. On backtracking,
the square is cleared in both cases. To make the example completely self-
contained, we include the necessary PostScript definitions in Appendix A.

Fig. 4.10 shows an animation for 50 queens. The labeling strategy is first-
fail, modified as proposed by Ertl in [Ert90]: In case of ties, we try to dis-
tribute the queens across the two horizontal halves of the board. In [Ert90],
this strategy is proposed without further explanation, and it is not men-
tioned how this heuristic could be improved for board sizes where it does
not perform well. However, when an animation of the process is available,
alternative strategies are often apparent. For example, in Fig. 4.10, one can
see that the strategy does not distribute the queens as evenly as intended
towards the end. We give another example in Section 4.9, where we create
similar animations for the SGP.

4.8 CLP formulations for the SGP

Due to its highly constrained and symmetric nature, the SGP has attracted
much attention from the constraint programming community. It is problem
number 10 in CSPLib, a benchmark library for constraints ([GW99]), and
has led to the design of powerful but complex dynamic symmetry breaking
schemes, such as [BB05]. Despite these efforts, no constraint solver was so
far able to solve the original problem instance, 8−4−10, although a solu-
tion is known to exist. Even very advanced constraint solvers, such as the
CLP(FD) solver that ships with SICStus Prolog, can currently solve the
original problem for a maximum of only 9 weeks. A table of CP-related
results for several instances is maintained by Harvey ([Har02]).

In this section, we discuss two different CLP formulations of the SGP.
The first one was written by Stefano Novello and uses the freely available
ECLiPSe CLP platform ([WNS97]). The second one was written by Mats
Carlsson and uses the CLP(FD) solver of the proprietary Prolog system
SICStus Prolog.

4.8.1 An ECLiPSe formulation of the SGP

Stefano Novello wrote a widely-cited ECLiPSe program (see [Har02]) that
is able to solve the 8−4−9 instance within a few seconds on commodity
hardware. His solution uses constraint logic programming over sets: In this
case, all domain elements are sets, and many common set operations are
available as built-in constraints. We have generalised his program to work
for arbitrary instances g−p−w, and present it in Fig. 4.11. As can be seen,
the built-in backtracking mechanism and powerful constraint libraries of

45

4.8 CLP formulations for the SGP

1 n_queens(N, Qs) :−
2 length(Qs, N),
3 Qs ins 1..N,
4 safe_queens(Qs).
5

6 safe_queens([]).
7 safe_queens([Q|Qs]) :−
8 safe_queens(Qs, Q, 1),
9 safe_queens(Qs).
10

11 safe_queens([], _, _).
12 safe_queens([Q|Qs], Q0, D0) :−
13 Q0 #\= Q, abs(Q0 − Q) #\= D0,
14 D1 #= D0 + 1,
15 safe_queens(Qs, Q0, D1).

Figure 4.8: A CLP(FD) formulation for the N -queens problem

1 animate(Qs) :− length(Qs, N), animate(Qs, N, Qs).
2

3 animate([], _, _).
4 animate([_|Rest], N, Qs) :−
5 animate_(Qs, 1, N),
6 N1 #= N − 1,
7 animate(Rest, N1, Qs).
8

9 animate_([], _, _).
10 animate_([Q|Qs], C, N) :−
11 Q #= N #<==> B,
12 freeze(B, queen_row_truth(C,N,B)),
13 C1 #= C + 1,
14 animate_(Qs, C1, N).
15

16 queen_row_truth(Q, N, 1) :− format("~w ~w q\n", [Q,N]).
17 queen_row_truth(Q, N, 0) :− format("~w ~w i\n", [Q,N]).
18 queen_row_truth(Q, N, _) :− format("~w ~w c\n", [Q,N]), false.

Figure 4.9: Observing the constraint solving process for N -queens

46

4.8 CLP formulations for the SGP

Q

(a)

Q

Q

Q

Q

Q

(b)

Q

Q

Q

Q

Q

Q

Q

Q

Q

(c)

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

(d)

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

(e)

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

(f)

Figure 4.10: 50 queens, strategy first-fail, breaking ties as proposed
in [Ert90], after: (a) 0.5, (b) 1.0, (c) 1.5, (d) 2.0, (e) 2.5, (f) 2.8 seconds

47

4.8 CLP formulations for the SGP

1 golf(G,P,W,Rounds) :−
2 (for(I, 1, P*G), foreach(I,PlayerList) do true),
3 ic_sets:(SetUB :: PlayerList..PlayerList),
4 (count(_,1,W),
5 foreach(GroupsInRound,Rounds),
6 param(SetUB), param(G), param(P) do
7 (foreach(S,GroupsInRound), count(_,1,G),
8 param(P), param(SetUB) do
9 ic_sets:(S :: [] .. SetUB), #(S,P)
10),
11 all_disjoint(GroupsInRound)
12),
13 (fromto(Rounds,[R|Rest0],Rest0,[]) do
14 flatten(Rest0,Rest),
15 (foreach(Group,R), param(Rest) do
16 (param(Group),
17 foreach(Group1,Rest) do
18 ic:(ISize :: 0..1),
19 #(Group /\ Group1,ISize)
20)
21)
22),
23 (for(Player,1,P*G), param(Rounds) do
24 (foreach(R,Rounds), param(Player) do
25 member(Group,R), Player in Group
26)
27).

Figure 4.11: A set-based formulation for the SGP, using ECLiPSe

ECLiPSe allow for a remarkably concise solution, which we briefly explain:
The schedule is represented as a list of weeks, and each week is a list

of groups. Each group is a set of players, which are represented by the
numbers 1, . . . , g × p. Using sets implicitly breaks the symmetry arising
from different player orders within groups. The first relevant constraints
occur in line 9: This line states that each group S is a subset of the set of
players, and that the cardinality of S is p. Line 11 ensures that the groups
within each week are disjoint. Line 19 encodes socialisation in the language
of set theory: The cardinality of the intersection of any two groups must
be either 0 or 1. This is equivalent to saying that no two players can play
together more than once in the same group. This completes the declarative
description of all requirements.

The remaining lines of the program search for solutions: Going through
all players in order, we do the following for each player pi: The weeks are
traversed in order, and in each week wj , pi is placed into a group of wj

where that is still possible. If no such place can be found, chronological
backtracking occurs, meaning that the most recent previous assignment is
undone, and a different choice is tried. We return to this strategy later.

4.8.2 A SICStus CLP(FD) formulation of the SGP

A CLP(FD) formulation for the SGP was generously posted in 2005 to
the discussion group comp.lang.prolog by Mats Carlsson, the designer
and main implementor of SICStus Prolog and its CLP(FD) solver ([Car05]).

48

4.8 CLP formulations for the SGP

Carlsson’s formulation is considerably more verbose than Novello’s ECLiPSe
version, but also more sophisticated. We explain the main ideas behind
Carlsson’s formulation without reproducing the complete program:

• The basic data structures are similar to the ECLiPSe formulation: The
schedule is a list of weeks, which in turn are lists of groups, and each
group consists of initially free variables, which become instantiated to
“players” during the search. In slight contrast to Novello’s program,
players are now represented by the numbers 0, . . . , g × p− 1.

• The first week is initialised by lining up all players in their natural
order across the groups. Players k×p, . . . , (k+1)×p−1, 0 ≤ k ≤ g−1,
have thus already played together.

• The free variables within each week are constrained to be pairwise
distinct, using a built-in constraint like all different as explained
in the Sudoku formulation above.

• The most important new idea in Carlsson’s formulation is a multiplica-
tion table, which is used to encode socialisation and is represented as a
list of triples. There is one triple (pi, pj ,mij) for each pair of players pi,
pj, pi < pj in this list. The value mij is computed as p1 × (g× p) + p2
and is thus unique for each such pair of players. This multiplication
table is used as follows: First, all ordered pairs of distinct variables
and players that occur together in any group are collected, in their
natural order. For example, for the array shown in Fig. 4.12, all or-
dered pairs of instantiated and free variables that occur in the same
group are: (0,B), (0,C), (B,C), (1,E), (1,F), and (E,F).

Group 1

Group 2

Week 1

0 B C

1 E F

Figure 4.12: A partially instantiated schedule

Next, these pairs are extended to triples by adding one new variable to
each of them. In the previous example, this yields the triples (0,B,x1),
(0,C,x2), (B,C,x3), (1,E,x4), (1,F,x5) and (E,F,x6), where xi denotes
a free variable that does not occur anywhere else in the formulation.
Then, the variables xi are constrained to be pairwise different, again
using a library constraint like all different. Finally, each of these
triples is constrained to be an element of the previously built multipli-
cation table. This is done with a library constraint called table. In
summary, these steps guarantee that no pair of golfers can occur more
than once in any group.

49

4.8 CLP formulations for the SGP

Proof. Suppose p1 and p2, p1 < p2, occur more than once in the same
group, and let (p1, p2, xm) and (p1, p2, xn) be the corresponding triples
that were built from two groups in which these players play together.
Then, by the table constraint, xm = xn = p1 × (g × p) + p2. But by
the all different constraint, xm 6= xn. Contradiction.

• Symmetries within groups are broken by imposing (implied) “less than”
constraints between the variables of each group. Due to the structure
of the first week, a “less than” constraint between the integer quo-
tients vi/p and vj/p can be imposed for each adjacent pair of vari-
ables vi and vj , since the players up to (but not including) the next
multiple of p have already played together in the first week. Sym-
metries among a week’s groups are broken by requiring that the list
of each group’s first variable consist of strictly ascending values. It
follows that player 0 must be the first player of the first group in
each week. The players that player 0 has partnered in the first week,
namely 1, . . . , p − 1, are assigned to the first positions of the second,
third, etc. group of each further week.

• Another set of implied constraints is added: Players that 0, . . . , p − 1
partner in further weeks must be distinct. Such constraints can yield
additional pruning and thus reduce the search space.

• As in the SAT formulation (Section 3.7), symmetries among weeks
are broken by imposing “less than” constraints between the second
variable of the first group of each week.

Carlsson’s formulation also allows to specify labeling options and a pa-
rameter that reorders variables before labeling them:

• byrow
The variables of each week occur row after row, from left to right for
each row.

• bycol
The variables of each week occur column after column, from top to
bottom for each column.

• byrowall
The variables are collected as in byrow, and then collated into a single
list that contains the ordered variables of each week.

• bycolall
Analogous to byrowall, ordering the variables for each week by col-
umn before merging them into a single list.

50

4.9 A new finite domain constraint solver

4.9 A new finite domain constraint solver

As part of this thesis, we developed a new finite domain constraint solver out
of the desire to run Carlsson’s CLP(FD) formulation of the SGP ([Car05]) in
a free environment. Our solver is available in the free Prolog systems SWI-
Prolog ([Wie03]) and YAP ([dSC06]) as library(clpfd). Thus, Carlsson’s
formulation can be run with these freely available systems with very few
modifications.

Our solver provides several unique features, such as reasoning over ar-
bitrarily large integers and always terminating propagation, but since they
are not relevant for solving SGP instances with the present formulation, we
do not discuss them here further.

Carlsson reports finding a solution for the 8−4−9 instance within frac-
tions of a second, using SICStus Prolog with the labeling option “min”, and
ordering “bycolall”. The challenge therefore consists in matching this result
as closely as possible, using the same problem formulation with our freely
available solver.

The two most important constraints of Carlsson’s CLP(FD) formulation
of the SGP are all different and table, which are explained above. For
both constraints, quite efficient and strong propagation algorithms are avail-
able ([Rég94], [Bar01]), but we did not implement them. Instead, we settled
for the simplest implementation of these constraints in both cases.

Our initial results were not competitive. Using an Apple MacBook with
a 2.16 GHz Intel Core 2 Duo CPU and the labeling strategy “first-fail”
with the ordering “bycolall”, we obtained a solution for the 8−4−7 instance
within 20 minutes. We found no solution for the 8−4−8 instance within one
week of CPU time with the same labeling strategy. This strategy therefore
left little hope to solve the yet harder 8−4−9 instance. We then applied the
ideas of Section 4.7 to the SGP to get an idea of what the solver was doing.
Fig. 4.13 shows various stages of progress when trying to solve the 8−4−9 in-
stance with our constraint solver.

It is apparent from this figure that the weeks are not filled evenly when
using the labeling strategy “first-fail”: The first few weeks are completely
filled after about one minute, and the remaining weeks are all partially filled.
This situation seems not to change for quite some time.

We therefore started looking for allocation strategies that did some-
thing else. One of the things we tried was to use the allocation strategy
of the ECLiPSe formulation: It distributes the players, in their natural or-
der, across all weeks. This ensures that the weeks are filled very uniformly,
which at least differs from what we had.

Fig. 4.14 shows the various stages of progress when applying this strategy
after posting all constraints of Carlsson’s CLP(FD) formulation with our
free constraint solver. As can be seen, instance 8−4−9 can thus be solved
in reasonable time with our solver as well.

51

4.9 A new finite domain constraint solver

Group 1

Group 2

Group 3

Group 4

Group 5

Group 6

Group 7

Group 8

Group 1

Group 2

Group 3

Group 4

Group 5

Group 6

Group 7

Group 8

Week 1 Week 2 Week 3 Week 4 Week 5

Week 6 Week 7 Week 8 Week 9

25

2

1110

3

31

2

0

4

2

3

3

29

0

1

8

0

2

1

9

5

21

2

32

1

26

6

14

0

0 0

1

0

23

1

15

1 1

3

16

1

8

1

30

3 3

4

0

2

50

3

28

19

7

22

18

12

620

24

17

13

7

3

2

27

12

2

(a)

Group 1

Group 2

Group 3

Group 4

Group 5

Group 6

Group 7

Group 8

Group 1

Group 2

Group 3

Group 4

Group 5

Group 6

Group 7

Group 8

Week 1 Week 2 Week 3 Week 4 Week 5

Week 6 Week 7 Week 8 Week 9

25

19

2

1110

3

31

2

0

4

22

2

3

3

29

0

1

8

0

2

14

1

9

5

21 23

2

32

1

2426

6

14

0

0 0

1

0

23

19

15

1 1

15

3

10

11

16

1

8

1

30

21

3 3

4

0

2

5

18

0

3

28

19

7

20

22

18

12

620

2824

17

13

7

3

2

17

16

13

27

12

2

(b)

Group 1

Group 2

Group 3

Group 4

Group 5

Group 6

Group 7

Group 8

Group 1

Group 2

Group 3

Group 4

Group 5

Group 6

Group 7

Group 8

Week 1 Week 2 Week 3 Week 4 Week 5

Week 6 Week 7 Week 8 Week 9

25

19

2

8

1110

3

21

31

2

0

4

7

29

31

22

2

3

3

29

0 16

1

8

0

2

14

1

9

5

21 23

2

32

1

30

2426

12

6

14

0

0 13011

1

0

23

10

19

15

1 1

15

3

10

14

11

16

1

8

1

30

21

3 3

4

0

2

15

5

2618

0

3

28

19

18

25

7

6

20

22

18

27

12

19

620

2824

9

17

13

7

3

2

17

16

13

27

12

2

(c)

Group 1

Group 2

Group 3

Group 4

Group 5

Group 6

Group 7

Group 8

Group 1

Group 2

Group 3

Group 4

Group 5

Group 6

Group 7

Group 8

Week 1 Week 2 Week 3 Week 4 Week 5

Week 6 Week 7 Week 8 Week 9

19

8

26

3

30

2921

0

4 13

16

2

29

0

15

24 5

160

2

4

14

6

9

26

5

14

24

23

2

32

8

1 4

30

24

12

6

26

14

26

14

18

11

0

24 22

29

9

17 1

15

3

23

17

14

11

16 14

1

19

30

2

15

30

15

12

5

29

1128

10

0

3

19

25

7

2520

22

2127

9

17

7

15

20

16

27

12

2

6

25

2

11

6

10

10

31

21

2513

2

7

7

22

29

31

22

8

3

3

2820

30 1

8

1

21

9

5

23

31

18

8

26

24

4

23

0

18 22

0 130

1

23

10

1

17

15

15

1

25

7

10

1

8 9

21

20

33

4

0

11

27

27

17

5

10

19

31

16

26

28

18

19

28

18

18

6

21

9

12

12

19

20 6

2824

13

11

30

3

2

16

5

17

7

13

(d)

Group 1

Group 2

Group 3

Group 4

Group 5

Group 6

Group 7

Group 8

Group 1

Group 2

Group 3

Group 4

Group 5

Group 6

Group 7

Group 8

Week 1 Week 2 Week 3 Week 4 Week 5

Week 6 Week 7 Week 8 Week 9

19

8

13

26

3

30

2921

0

23

4 13

16

2

29

0

15

24 5

160

2

4

14

6

9

26

5

28

14

24

23

2

32

8

1 4

30

24

12

6

26

14

26

14

18

11

20

0

24 22

29

9

17

27

1

15

3

23

17

14

11

16 14

1

19

30

2

15

30

15

29

12

5

29

1128

10

0

3

19

25

7

2520

22

2127

9

17

7

15

20

31

16

27

12

2

6

25

2

27

11

6

10

10

31

21

2513

2

7

8

7

22

29

31

22

8

3

3

2820

30 1

8

1

21

9

5

23

31

4

18

8

26

24

4

23

0

13

18 22

0 130

1

23

10

1

17

15

15

1

21

25

7

10

1

8 9

21

20

33

4

0

11

27

27

17

5

10

19

31

16

16

26

28

18

19

28

22

18

18

6

21

9

12

12

19

20 6

2824

13

11

30

3

2

16

5

17

7

13

(e)

Group 1

Group 2

Group 3

Group 4

Group 5

Group 6

Group 7

Group 8

Group 1

Group 2

Group 3

Group 4

Group 5

Group 6

Group 7

Group 8

Week 1 Week 2 Week 3 Week 4 Week 5

Week 6 Week 7 Week 8 Week 9

19

8

20

26

3

30

2921

0

23

4 13

16

2

29

0

15

24 5

160

2

4

14

6

9

26

5

30

14

24

23

2

32

8

1 4

30

24

12

6

26

14

26

14

18

11

23

0

24 22

29

9

17

27

1

15

3

23

17

14

11

16 14

1

19

30

2

15

30

15

29

12

5

29

1128

10

0

3

19

25

7

2520

22

2127

9

17

7

15

20

31

16

27

12

2

6

25

2

25

11

6

10

10

31

21

28

2513

2

7

19

7

22

29

31

22

8

3

3

2820

30 1

8

1

21

9

5

23

31

12

18

8

26

26

24

4

23

0

13

18 22

0 130

1

23

10

1

17

15

17

15

1

21

25

7

10

1

8 9

21

20

33

4

0

11

27

27

17

5

10

19

31

16

16

26

28

18

19

28

22

18

18

6

21

9

12

12

19

20 6

2824

13

11

30

3

2

16

5

17

7

13

(f)

Group 1

Group 2

Group 3

Group 4

Group 5

Group 6

Group 7

Group 8

Group 1

Group 2

Group 3

Group 4

Group 5

Group 6

Group 7

Group 8

Week 1 Week 2 Week 3 Week 4 Week 5

Week 6 Week 7 Week 8 Week 9

19

8

26

9

3

30

2921

0

23

4 13

16

2

29

0

15

24 5

160

2

4

14

6

9

26

5

14

24

4

23

2

32

8

1 4

30

24

12

6

26

14

26

14

18

11

0

24 22

29

9

17

27

1

25

15

3

23

17

14

11

16 14

1

19

30

20

2

15

30

15

29

12

5

29

2028

10

0

3

19

25

7

2520

22

2127

6

9

17

7

22

15

30

22

31

16

27

12

2

6

25

2

11

6

10

10

31

21

17

2513

2

7

7

22

29

31

22

8

3

3

2820

30

12 18

1

8

1

21

9

5

23

31

18

8

26

24

4

23

0

13

18 22

0 130

1

23

10

1

17

15

15

1

21

16

9

10

1

8 7

21

20

33

4

0

11

27

27

5

17

5

10

19

31

16

25

26

28

18

19

28

11

18

18

6

21

9

28

12

12

19

20 6

2824

13

11

30

3

2

16

5

17

7

13

(g)

Group 1

Group 2

Group 3

Group 4

Group 5

Group 6

Group 7

Group 8

Group 1

Group 2

Group 3

Group 4

Group 5

Group 6

Group 7

Group 8

Week 1 Week 2 Week 3 Week 4 Week 5

Week 6 Week 7 Week 8 Week 9

19

8

13

26

3

30

2921

0

23

4 13

16

2

29

0

15

24

25

5

160

2

4

14

6

9

26

5

28

14

24

23

2

32

8

1 4

30

24

12

6

26

14

26

14

18

11

26

0

24 22

29

9

17

27

1

19

15

3

23

17

14

11

16 14

1

19

30

2

15

30

15

29

12

5

29

2028

10

0

3

19

25

7

2520

22

4

2127

9

17

7

28

15

22

31

16

27

12

2

6

25

2

27

11

6

10

10

31

21

2513

2

7

8

7

22

29

31

22

8

3

3

2820

30

22

1

8

1

21

9

5

23

31

20

18

8

26

24

4

23

0

13

18 22

0 130

1

23

10

1

17

15

15

1

21

16

9

10

1

8 7

21

20

33

4

0

11

27

27

12

17

5

10

19

31

16

25

26

28

18

19

28

11

18

18

6

21

9

12

12

19

20 6

2824

13

11

30

3

2

16

5

17

7

13

(h)

Figure 4.13: Instance 8−4−9, labeling strategy first-fail, after: (a) 10, (b) 20,
(c) 30, (d) 50, (e) 100, (f) 200, (g) 400, (h) 700 seconds

52

4.9 A new finite domain constraint solver

Group 1

Group 2

Group 3

Group 4

Group 5

Group 6

Group 7

Group 8

Group 1

Group 2

Group 3

Group 4

Group 5

Group 6

Group 7

Group 8

Week 1 Week 2 Week 3 Week 4 Week 5

Week 6 Week 7 Week 8 Week 9

25

2

1110

3

31

4

2

0

4

2

3

3

29

0

4

1

0

2

5

1

9

5

21

2

32

4

1

26

6

14

0

5

0

4

0

1

0

23

15

15

1 1

3

16

1

8

1

30

5

3 3

5

0

2

4

4

5

4

0

3

28

19

7

5

22

18

20

5

24

17

13

4

3

2

27

12

2

(a)

Group 1

Group 2

Group 3

Group 4

Group 5

Group 6

Group 7

Group 8

Group 1

Group 2

Group 3

Group 4

Group 5

Group 6

Group 7

Group 8

Week 1 Week 2 Week 3 Week 4 Week 5

Week 6 Week 7 Week 8 Week 9

25

2

7

11

8

10

3

31

4

2

0

4

6

2

3

3

29

0

4

1

0

2

5

1

9

5

21

2

32

4

1 6

26

7

6

8

14

0

5 8

0

4

0

1

0

23

15

15

1

6

1

6

3

6

7

16

1

8

1

7

30

5

3 3

5

0

2

4

6

4

7

5

4

0

3

6

28

19

7

7

5

22

18

6

7

20

5

24

7

17

13

4

3

2

8

27

12

2

(b)

Group 1

Group 2

Group 3

Group 4

Group 5

Group 6

Group 7

Group 8

Group 1

Group 2

Group 3

Group 4

Group 5

Group 6

Group 7

Group 8

Week 1 Week 2 Week 3 Week 4 Week 5

Week 6 Week 7 Week 8 Week 9

25

2

7

11

8

10

3

31

4

2

0

4

6

8

9

2

3

3

29

0

8

4

1

0

2

8

5

1

9

5

21

2

8

32

4

1 6

26

7

9

6

8

14

0

5

0

4

0

1

0

23

15

15

1

6

1

6

3

6

7

16

1

8

1

7

30

5

3 3

5

0

2

4

6

4

9

7

5

4

0

3

6

28

19

7

7

5

22

18

6

7

20

5

24

7

17

13

4

3

8

2

8

27

12

2

(c)

Group 1

Group 2

Group 3

Group 4

Group 5

Group 6

Group 7

Group 8

Group 1

Group 2

Group 3

Group 4

Group 5

Group 6

Group 7

Group 8

Week 1 Week 2 Week 3 Week 4 Week 5

Week 6 Week 7 Week 8 Week 9

25

10

2

7

11

8

10

3

31

4

2

0

4

6

10

8

9

2

3

3

29

9

0

8

4

1

0

2

8

5

10

1

9

5

21

10

2

8

32

4

1 6

26

10

7

6

8

14

0

10

5

0

9

4

10

0

1

0

23

15

15

1

6

1

6

3

9

6

7

16

1

8

1

7

30

5

3 3

5

0

2

4

9

6

4

9

7

5

4

0

3

6

28

19

7

7

5

22

18

10

6

7

20

5

24

9

9

7

17

13

4

3

8

2

8

27

12

2

(d)

Group 1

Group 2

Group 3

Group 4

Group 5

Group 6

Group 7

Group 8

Group 1

Group 2

Group 3

Group 4

Group 5

Group 6

Group 7

Group 8

Week 1 Week 2 Week 3 Week 4 Week 5

Week 6 Week 7 Week 8 Week 9

10

7

3

0

4 11

9

2

29

9

0

8

4

0

2

8

5

10

9

5

10

2

32

4

1 6

10

6

8

14

9

4

11

0

5

1

6

37

16

1

7

30

2

9

6

5

4

0

3

7

22

10

11

7

9

9

17

4

27

12

2

25

2

1110

8

31

4

2

6

8

10

3

3

11

1

1

21

11

8

26

7

0

5

10

0

10

0

1

23

11

1

15

6

1

6

9

1

8 5

11

33

5

04

11

4

7

9

19

28

6

7

18

5

6

20

5

24

13

7

3

2

8

8

(e)

Group 1

Group 2

Group 3

Group 4

Group 5

Group 6

Group 7

Group 8

Group 1

Group 2

Group 3

Group 4

Group 5

Group 6

Group 7

Group 8

Week 1 Week 2 Week 3 Week 4 Week 5

Week 6 Week 7 Week 8 Week 9

10

7

3

0

13

4 11

9

2

12

29

9

0

8

12 4

0

2

8

512

10

9

5

10

2

32

4

1 6

10

6

8

14

9

4

13

11

0

5

1

6

37

16

1

7

30

2

13

9 14

6

5

4

0

3

12

7

22

10

14

11

7

9

9

17

4

27

12

2

12

25

2

1110

8

31

12

4

12

2

6

8

10

3

3

11

1

1

21

11

8

26

7

0

5

10

14

0

10

0

1

23

11

1

13

15

13

6

1

12

6

9

1

8 5

11

13

14

33

5

04

11

13

13

4

7

9

19

28

6

7

18

5

6

20

5

24

13

7

3

2

8

8

(f)

Group 1

Group 2

Group 3

Group 4

Group 5

Group 6

Group 7

Group 8

Group 1

Group 2

Group 3

Group 4

Group 5

Group 6

Group 7

Group 8

Week 1 Week 2 Week 3 Week 4 Week 5

Week 6 Week 7 Week 8 Week 9

10

15

7

18

3

0

13

4 11

9

2

12

29

9

0

8

12

17

4

0

2

8

512

10

9

5

10

15

2

32

4

1 6

10

6

8

14

15

9

4

13

11

0

5

16 1

16

6

3

16

7

16

1

7

30

2

15

17

13

9

14

14

6

5

4

0

3

12

7

22

14

10

14

11

7

16

16

9

9

17

4

1827

12

2

12

25

2

1110

8

17

31

12

4

12

2

6

15

8

10

3

3

19

11

17

1

19

1

21

11

15

8

17

26

7

18

16

18

17

0

5

10

19

14

0 14

10

0

1

23

11

1

13

15

13

6

1

12

6

9

1

8 5

11

13

14

33

16

5

0

19

15

14

4

11

15

13

13

4

7

9

18

19

28

6

16

7

18

5

6

19

18

1720

5

24

13

7

3

2

8

18

17

8

18

(g)

Group 1

Group 2

Group 3

Group 4

Group 5

Group 6

Group 7

Group 8

Group 1

Group 2

Group 3

Group 4

Group 5

Group 6

Group 7

Group 8

Week 1 Week 2 Week 3 Week 4 Week 5

Week 6 Week 7 Week 8 Week 9

10

18

28

12

29

0

12

29

23

17

4

0

2

5

10

5 20

10

32

4

26

6

14

15

25

22

4

13

23

31 19

25

1

24

21

3116

23

7

30

21

15

13

9

24

14

0

3

21

12

7

10

14 7

9

17

4

26

24

25

28

27

27

12

2

19

1110

8

17

31

26

10

24

22

22

20

19

25

1

19

1

21

15

27

21

8

26

7

28

20

18

17

0

0 14

10

1

19

27

6

236

9

11

13

14

33

16

23

15

11

15

30

13

4

7

18

19

28

6

27

19

18

1720

5

30

13

7

29

31

8

18

8

18

30

20

7

15 27

30

22

3

24

31

30

30

28

0

4

13

26

11

2

9

9

22

8

8

21

12

9

24

28

2

15

25

1

28

6

10

8

9

11

0

5

20

16

28

16

22

3

6

7

16

26

1

23

2

30

17

3129

1430

6

4

5

31

22

25

14

11

16

16

9

18

29

29

12

25

2

22

27

29

25

4

12

26

12

2

6

27

8

15

24

29

3

3

21

23

25

3111

26

17

11

17

20

21

22

18

16

10

5

14

19

0

23

21

11

1

13

15

13

24

1

12

1

8 5

20

5

0

19

4

14 26

31

13

27

28

9

7

16

20

29

5

18

6

23

24

3

2

17

(h)

Figure 4.14: Instance 8−4−9, allocation as in the ECLiPSe formulation,
after: (a) 10, (b) 12, (c) 13, (d) 14, (e) 15, (f) 16, (g) 17, (h) 18 seconds

53

4.10 Experimental results

4.10 Experimental results

We now have seen two different constraint-based formulations for the SGP,
and both can solve the original SGP instance for 9 weeks. The ECLiPSe
formulation by Stefano Novello is considerably more concise than Carlsson’s
formulation, and so it is left to find out whether the higher complexity of
Carlsson’s CLP(FD) formulation pays off when solving other instances.

Table 4.1 compares the two formulations on several different instances.
Each instance was tried with Novello’s formulation (using the ECLiPSe CLP
platform) and Carlsson’s formulation (using our constraint solver with SWI-
Prolog) on an Apple MacBook with a 2.16 GHz Intel Core 2 Duo CPU
and 1GB RAM, and we show the time it took to find the first solution.
The symbol “–” means that no solution was found within 20 minutes. The
“strategy” column shows which labeling options and variable order was used
with the Prolog formulation. The entry “custom” means that we used the
allocation strategy of the ECLiPSe formulation, which we explained above.

From Table 4.1, it is clear that the more sophisticated formulation is
very advantageous on many instances. Even with our comparatively sim-
plistic implementations of the most important constraints used in Carlsson’s
formulation, we are able to solve many instances that cannot be solved with
the shorter ECLiPSe formulation within the timeout.

In fact, the ECLiPSe formulation solves many other instances only for
one or two weeks, leaving the impression that its allocation strategy works
for 8−4−w instances largely by coincidence.

It is interesting that our custom allocation solves instance 5−3−7 faster
than instance 5−3−6, although a solution for the former implies a solution
for the latter. We therefore recommend to always try to solve “harder”
instances as well, especially when using custom heuristics, and not to stop
too early when an instance cannot be solved for a certain number of weeks.

4.11 Conclusion

Constraint-based approaches towards the SGP have many advantages: Ad-
vanced constraint solvers allow to compactly state the requirements, and
can solve many instances efficiently. Pre-defined variable and value selection
strategies allow users to try out different strategies for solving a problem.
In addition, it is easy to define custom allocation strategies on top of a
constraint-based model.

CLP(FD) formulations can be regarded as a superset of SAT encodings
(since the Boolean values True and False can be mapped to integers), and
let users express constraints in a more convenient and shorter form that is
more easily seen to be correct. Many observations derived from studying
SAT encodings (see Chapter 3) also apply to constraint-based approaches,
in particular the potential impact of symmetry breaking constraints and

54

4.11 Conclusion

different formulations. Like SAT solvers, constraint solvers have evolved
continuously in recent years, and existing formulations automatically benefit
from improved solvers.

We have discussed two existing constraint-based approaches for solving
SGP instances in this chapter. One uses the freely available CLP plat-
form ECLiPSe, and one was written for the proprietary Prolog system SICS-
tus Prolog. As is often the case for constraint-based approaches, both ver-
sions are complete: If a solution exists, it will be found. This property
can be used to prove by exhaustive search that no solution exists for some
instances, such as 6−6−4. CLP formulations can also be used to decide
completion problems, where some values are already given.

We have implemented a new finite domain constraint solver which lets
us run Mats Carlsson’s CLP(FD) formulation of the SGP with the freely
available Prolog systems SWI-Prolog and YAP after marginal modifications.
Using our solver and visualisations of the constraint solving process, we
could solve the original SGP instance for 9 weeks. This matches the best
current result obtained with constraint-based approaches for this instance,
but is not optimal. We also presented benchmark results for several other
instances and showed that the more sophisticated problem formulation is
highly advantageous on many instances.

55

4.11 Conclusion

instance ECLiPSe SWI-Prolog strategy

5−3−1 0.19s 0.01s custom
5−3−2 2.98s 0.05s custom
5−3−3 – 0.11s custom
5−3−4 – 0.20s custom
5−3−5 – 5.72s custom
5−3−6 – 156.93s custom
5−3−7 – 11.88s custom

6−4−1 0.19s 0.02s ff, bycolall
6−4−2 – 0.39s ff, bycolall
6−4−3 – 1.25s ff, bycolall
6−4−4 – 2.32s ff, bycolall
6−4−5 – 26.42s ff, bycolall

7−4−1 0.19s 0.03s ff, bycolall
7−4−2 – 0.70s ff, bycolall
7−4−3 – 1.99s ff, bycolall
7−4−4 – 3.61s ff, bycolall
7−4−5 – 5.39s ff, bycolall

8−4−1 0.19s 0.04s custom
8−4−2 0.22s 1.04s custom
8−4−3 0.27s 2.22s custom
8−4−4 0.38s 3.51s custom
8−4−5 0.49s 4.95s custom
8−4−6 0.64s 6.93s custom
8−4−7 0.85s 8.97s custom
8−4−8 1.18s 12.18s custom
8−4−9 1.47s 14.64s custom

Table 4.1: Benchmark results using the two discussed constraint-based ap-
proaches for several instances

56

5 A new greedy heuristic for the SGP

5.1 An important observation

Consider the solution for the instance 8−4−5 shown in Fig. 5.1. We highlight
players 0 and 31 in each week.

Group 1

Group 2

Group 3

Group 4

Group 5

Group 6

Group 7

Group 8

Week 1 Week 2 Week 3 Week 4 Week 5

10

7

3

28

0

21

4 11

9

29 22

12 4

2

16

21

18

9

27

5 15

25

2

32

4

1 6

26

28

10

6

8

14

26

13

19

0

15

5

26

22

3

11

3116

7

26

1

23

30

2

23

29

28

21

17

29

2230

4

0

7

12

2531

22

714

17

18

30

31

27

27

12

25

11

16

10

10

31

2520

2

6

15

24

29

24

14

3

13

19

1

21

19

27

14

21

20

26

9

16

0

10

18

5 8

1

23

1

24

15

27

20

12

17

68 5

11

14

16

0

19

12

15

2522

4

23

29

13

24

13

31

9

19

28

11

18

5

30

6

8

23

9

1720

3024

13

7

28

3

8

17

18

20

Figure 5.1: A solution for the 8−4−5 instance, with players 0 and 31 high-
lighted in each week

Consider now the set of players with which player 0 has played in any
group in this schedule, which is:

{1, 2, 3} ∪ {4, 8, 12} ∪ {5, 10, 15} ∪ {6, 11, 13} ∪ {7, 9, 14} = {1, . . . , 15}

Analogously, consider the set of players with which player 31 has played in
any group, which is:

{28, 29, 30} ∪ · · · ∪ {17, 22, 24} = {16, . . . , 30}

Suppose now that we want to extend this schedule to further weeks, while
leaving the existing weeks unchanged. From the previous observations, it
follows that player 0 cannot play together with player 31 in any future group,
for if these players did play together in any group, they would not find any
two partners that are necessary to build a complete group. In fact, there
could not even be a further group of size three containing them: Player 0
can only play with {16,. . . ,31}, and player 31 can only play with {0,. . . ,15},
since the other combinations already occurred in previous weeks. This leaves
no player that is compatible with both of them.

The same reasoning can be applied to other pairs of players: As soon
as any two players have partnered complementary subsets of players, they
cannot find a third player to play with. An analogous property holds for
larger subsets of players. If enough pairs or larger subsets of players run
out of compatible partners, it is not possible to build any further group in
which they play together. In the next sections, we exploit this observation
to develop a new greedy heuristic for the SGP.

57

5.2 Freedom of sets of players

5.2 Freedom of sets of players

We first formalise what we observed in the previous section:

Definition 5.1. (Freedom) Let C be a partial configuration. For an ar-
bitrary player x, we denote with PC(x) the potential partner-set of x with
respect to C, i.e., the set of players that x can still partner in any group,
assuming C as given. In other words, PC(x) is the set of all players (ex-
cept x), minus the players that x has already partnered in any group of C.
For any set S of players, we denote with ϕC(S) the freedom of S with re-
spect to C, and define it as the cardinality of the intersection of the potential
partner-sets of all players in S, i.e.:

ϕC(S) =

∣

∣

∣

∣

∣

⋂

x∈S

PC(x)

∣

∣

∣

∣

∣

(5.1)

Informally, the freedom of a set of players denotes how many players
they can still “partner together”.

For example, with the configuration C of Fig. 5.1, the freedom of the
player set {0, 31} is:

ϕC({0, 31}) = |{16, . . . , 31} ∩ {0, . . . , 15}| = |∅| = 0

As we already observed, these two players therefore cannot play together
in any further group. It turns out that the solution of Fig. 5.1 cannot be
extended by any further week (in fact, not even by a single group) if the given
weeks must be kept unchanged. This is because the freedom of all pairs of
players that have not yet played together is 0 in this case. Clearly, this is
not always the case, and different pairs of players also do not necessarily
have the same freedom. For example, consider a different solution for the
8−4−5 instance, shown in Fig. 5.2.

Group 1

Group 2

Group 3

Group 4

Group 5

Group 6

Group 7

Group 8

Week 1 Week 2 Week 3 Week 4 Week 5

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

16 17 18 19

20 21 22 23

24 25 26 27

28 29 30 31

0 4 8 12

1 5 9 13

2 6 10 14

3 7 11 15

16 20 24 28

17 21 25 29

18 22 26 30

19 23 27 31

0 5 10 15

1 4 11 14

2 7 8 13

3 6 9 12

16 21 26 31

17 20 27 30

18 23 24 29

19 22 25 28

0 6 16 22

1 7 17 23

2 4 18 20

3 5 19 21

8 14 24 30

9 15 25 31

10 12 26 28

11 13 27 29

0 7 18 21

1 6 19 20

2 5 16 23

3 4 17 22

8 15 26 29

9 14 27 28

10 13 24 31

11 12 25 30

Figure 5.2: A different solution for the 8−4−5 instance

Here are examples computed with the configuration shown in Fig. 5.2:

ϕ({0, 27}) = |∅| = 0
ϕ({0, 24}) = |{9, 11, 17, 19}| = 4
ϕ({0, 9}) = |{17, 19, 20, 23, 24, 26, 29, 30}| = 8

ϕ({0, 9, 24}) = |{17, 19}| = 2

58

5.3 A greedy heuristic for the SGP

5.3 A greedy heuristic for the SGP

We now propose a greedy heuristic for the SGP instance g−p−w, which
is intended to be used with a complete backtracking search. Let us first
suppose that p is even. Then the task of scheduling the players into groups
in each week can also be seen as scheduling pairs of players into groups.

The backtracking search now proceeds as follows: Visit the weeks one
after another, and in each week, traverse the groups in their natural order.
For each pair of adjacent positions in a group, we need to select a pair
of players still remaining to be scheduled in the current week. Here, we
select a pair having minimal freedom with respect to the current partial
configuration.

The intention behind this choice is that if a pair of players is close to
running out of potential partners, then they should be scheduled in the
same group while that is still possible at all. This heuristic is similar to the
labeling strategy “first-fail” in constraint satisfaction problems (Section 4.6).

If a group is encountered that cannot be completed, backtracking occurs:
We undo the most recent choice of players, and select a pair with next larger
degree of freedom instead.

If p is odd, there are several options. A simple solution is to schedule
pairs of players for each group as far as possible, and then to fill the re-
maining position with any player that is compatible with all other players
scheduled in this group.

Another approach is to generalise the heuristic to triples and larger sets
of players. Here, a trade-off must be reached between accurate assessment
of a scheduling choice and computational tractability.

We show a Prolog specification of this heuristic, tailored for 8−4−w
instances (i.e., the original SGP), in Fig. 5.3. We benefit from arbitrary
precision arithmetic to represent sets of players as bit vectors. This lets us
efficiently intersect sets by using fast bitwise operations. Determining a set’s
cardinality is thus also very efficient. This program can solve the original
SGP for 9 weeks (Fig. 5.4) virtually instantly, although some backtracking is
necessary. This matches the best current results of constraint solvers for this
instance, while using much simpler methods. After extending the heuristic
from pairs to triples, we obtained solutions for Kirkman’s schoolgirl problem
in 2 seconds, using a 2.16 GHz Apple MacBook (Fig. 5.5). This solves the
problem optimally, without taking symmetries into account at all.

While our heuristic does not perform so well on all SGP instances, we
show in the next chapter that its main idea can be used to solve the origi-
nal SGP optimally.

59

5.3 A greedy heuristic for the SGP

1 schedule(N, Weeks) :− init(S0), phrase(weeks(N, S0), Weeks).
2

3 init(State) :−
4 B is (1 << 32) − 1, findall(N−B, between(0,31,N), State0),
5 list_to_assoc(State0, State).
6

7 weeks(0, _) −−> !, [].
8 weeks(N0, S0) −−> { numlist(0, 31, Ps), groups(Ps, S0, S1, Gs, []),
9 N1 is N0 − 1 }, [Gs], weeks(N1, S1).
10

11 groups([], S, S) −−> !, [].
12 groups(Ps0, S0, S) −−>
13 { list_pairs(Ps0, S0, Pairs0, []), keysort(Pairs0, Pairs1),
14 member(_−p(A,B,NA,NB), Pairs1),
15 member(_−p(C,D,NC,ND), Pairs1),
16 A =\= C, A =\= D, B =\= C, B =\= D,
17 Pattern is (1 << A) \/ (1<<B) \/ (1<<C) \/ (1 << D),
18 (NA /\ NB /\ NC /\ ND) /\ Pattern =:= Pattern,
19 all_delete([A,B,C,D], Ps0, Ps1),
20 eliminate([B,C,D], A, S0, S1), eliminate([A,C,D], B, S1, S2),
21 eliminate([A,B,D], C, S2, S3), eliminate([A,B,C], D, S3, S4) },
22 [[A,B,C,D]], groups(Ps1, S4, S).
23

24 eliminate([A,B,C], P, S0, S) :−
25 get_assoc(P, S0, CP0), put_assoc(P, S0, CP1, S),
26 CP1 is (\ (1<<A) /\ \ (1<<B) /\ \ (1<<C)) /\ CP0.
27

28 all_delete([], Ds, Ds).
29 all_delete([A|As], Ds0, Ds) :− delete(Ds0, A, Ds1),
30 all_delete(As, Ds1, Ds).
31

32 list_pairs([], _) −−> [].
33 list_pairs([L|Ls], S0) −−> { get_assoc(L, S0, NL) },
34 pair_up(Ls, S0, NL, L), list_pairs(Ls, S0).
35

36 pair_up([], _, _, _) −−> [].
37 pair_up([B|Bs], S0, NA, A) −−>
38 { get_assoc(B, S0, NB), Num is popcount(NA/\NB) },
39 ({ NA /\ (1<<B) =\= 0, Num >= 4 } −>
40 [Num−p(A,B,NA,NB)] ; []), pair_up(Bs, S0, NA, A).

Figure 5.3: Prolog specification of our greedy heuristic for 8−4−w instances

60

5.3 A greedy heuristic for the SGP

Group 1

Group 2

Group 3

Group 4

Group 5

Group 6

Group 7

Group 8

Group 1

Group 2

Group 3

Group 4

Group 5

Group 6

Group 7

Group 8

Week 1 Week 2 Week 3 Week 4 Week 5

Week 6 Week 7 Week 8 Week 9

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

16 17 18 19

20 21 22 23

24 25 26 27

28 29 30 31

0 4 8 12

1 5 9 13

2 6 10 14

3 7 11 15

16 20 24 28

17 21 25 29

18 22 26 30

19 23 27 31

0 16 5 21

1 17 4 20

2 18 7 23

3 19 6 22

8 24 13 29

9 25 12 28

10 26 15 31

11 27 14 30

0 26 6 28

1 27 7 29

2 24 4 30

3 25 5 31

8 18 14 20

9 19 15 21

10 16 12 22

11 17 13 23

0 11 18 25

1 10 19 24

2 9 16 27

3 8 17 26

4 15 22 29

5 14 23 28

6 13 20 31

7 12 21 30

0 13 7 10

1 12 6 11

2 15 5 8

3 14 4 9

16 29 23 26

17 28 22 27

18 31 21 24

19 30 20 25

0 19 14 29

1 18 15 28

2 17 12 31

3 16 13 30

4 23 10 25

5 22 11 24

6 21 8 27

7 20 9 26

0 20 15 27

1 21 14 26

2 22 13 25

3 23 12 24

4 16 11 31

5 17 10 30

6 18 9 29

7 19 8 28

0 17 9 24

1 16 8 25

2 19 11 26

3 18 10 27

4 21 13 28

5 20 12 29

6 23 15 30

7 22 14 31

Figure 5.4: A 9-week solution for the SGP, found by our greedy heuristic

Group 1

Group 2

Group 3

Group 4

Group 5

Week 1 Week 2 Week 3 Week 4 Week 5 Week 6 Week 7

0 1 2

3 4 5

6 7 8

9 10 11

12 13 14

0 3 6

1 4 7

2 9 12

5 10 13

8 11 14

2 5 8

0 4 11

1 3 14

6 9 13

7 10 12

0 5 12

1 6 10

2 7 14

4 8 9

3 11 13

0 7 13

1 5 9

2 6 11

3 8 12

4 10 14

0 8 10

1 11 12

2 4 13

3 7 9

5 6 14

0 9 14

1 8 13

2 3 10

4 6 12

5 7 11

Figure 5.5: A solution for Kirkman’s schoolgirl problem, found by our greedy
heuristic extended to triples

61

6 Metaheuristic methods

6.1 Introduction

In this chapter, we first present existing metaheuristic approaches for solv-
ing SGP instances. We then use a simplified local search in a new greedy
randomised adaptive search procedure (GRASP), which we show to be very
competitive with existing metaheuristic and constraint-based approaches.
One of the instances we solve is 8−4−10. This makes our method the first
metaheuristic technique that solves the original SGP optimally.

6.2 Metaheuristic SAT solving

We already encountered a metaheuristic method in Section 3.6, where we
used Walksat to solve generated SAT instances. Walksat is based on GSAT
and uses metaheuristic methods like local search, random-walk and random-
noise, which were shown to be surprisingly well-suited for solving certain
classes of SAT instances ([SKC93]). The basic idea of GSAT is to start with
a random assignment of True and False values, and then to repeatedly
change (“flip”) the assignment of a variable that leads to the largest de-
crease of unsatisfied clauses. To escape from local optima, this simple local
search approach can be mixed with random walk and random noise moves.
Random walk was shown to be more effective in [SKC93], and means that
with probability p, a variable occurring in an unsatisfied clause is flipped.
Algorithm 6.1 shows the basic GSAT algorithm with random walk.

Algorithm 6.1 GSAT with random walk ([SKC93])

1: for i← 1 to Max-Tries do
2: T ← a randomly generated truth assignment
3: for j ← 1 to Max-Flips do
4: if T satisfies α then
5: return T
6: else
7: if Random() < p then
8: Pick a variable occurring in an unsatisfied clause and flip its

truth assignment
9: else

10: Flip any variable in T that results in the greatest decrease (can
be 0 or negative) in the number of unsatisfied clauses

11: end if
12: end if
13: end for
14: end for
15: return “No satisfying assignment found”

62

6.3 Local search for the SGP

We saw in Chapter 3 that Walksat is currently not competitive with
other approaches for the tested SGP instances, at least not when using the
SAT model that we proposed. However, its main idea can be used to de-
rive a much more effective metaheuristic method for solving SGP instances.
It is especially instructive to observe the sequence of intermediate config-
urations when solving SGP instances with Walksat (Fig. 3.7). As can be
seen, several unnecessary steps occur. For example, due to the nature of the
SAT encoding, not all positions need to have players assigned to them in
the course of the search (Fig. 3.7 (b), (d), and others), and the same player
can intermittently occur in several groups of the same week (Fig. 3.7 (a),
(b), and others). Such configurations are of course invalid and certainly
require additional flips before the instance is solved. Therefore, we should
try to prevent these configurations from occurring in the first place, and the
method we discuss in the next section does that.

6.3 Local search for the SGP

In [DH05], Dotú and Hentenryck propose a local search approach with tabu
lists for the SGP. We briefly describe their main ideas, with some changes
in notation for brevity.

6.3.1 The model

Given the SGP instance g−p−w, we introduce a decision variable x[i, j, k]
for 1 ≤ i ≤ g, 1 ≤ j ≤ p, 1 ≤ k ≤ w. A schedule σ is an assignment of
decision variables to values. The value of a decision variable x[i, j, k] in a
schedule σ is denoted as σ(x[i, j, k]) and states which golfer plays in group i
and position j of week k. Golfers are represented by the integers 1, . . . , g×p.
A schedule is valid if:

• each golfer plays exactly once in each week
As we will see, this constraint is ensured by the initial assignment
and preserved by local moves. Therefore, it need not be considered
explicitly.

• any two golfers play together at most once in the same group.

Dotú and Hentenryck introduce the following notation which is useful
to concisely describe their algorithm: The value #σ(a, b) denotes the num-
ber of times golfers a and b play in the same group in schedule σ, and a
variable m[a, b] is used to count the number of times that golfers a and b
meet in the same group beyond their allowed number of meetings. Since
pairs of golfers are allowed to play in the same group at most once, its
value σ(m[a, b]) in a schedule σ is defined as:

63

6.3 Local search for the SGP

σ(m[a, b]) = max(0,#σ(a, b) − 1) (6.1)

The value f(σ) of a schedule σ is defined as as:

f(σ) =
∑

a, b∈{1,...,g×p}

σ(m[a, b]) (6.2)

Finding a solution for an SGP instance is thus a minimisation problem
consisting of finding a valid schedule σ such that f(σ) = 0.

The triple 〈i, j, k〉 is a conflict position in a schedule σ iff there is a j′ 6=
j such that there is a week k′ 6= k with σ(x[i, j, k]) = σ(x[l,m, k′]) and
σ(x[i, j′, k]) = σ(x[l, n, k′]) for any l, m and n, i.e., wherever a player is in
the same group with another player more than once. We denote the set of
conflict positions of a schedule σ with C(σ).

6.3.2 The neighbourhood

As their neighbourhood, Dotú and Hentenryck chose swapping two golfers
from different groups in the same week. The set S of swaps is defined as:

S = {(〈g1, p1, k〉, 〈g2, p2, k〉) | 1 ≤ g1, g2 ≤ g, 1 ≤ p1, p2 ≤ p, g1 6= g2} (6.3)

To focus on swaps that may decrease the objective function, only swaps
that involve a conflict position are considered. The reduced set of swaps,
denoted as S−(σ), is thus:

S−(σ) = {(s1, s2) ∈ S | s1 ∈ C(σ)} (6.4)

6.3.3 The tabu component

The tabu component in [DH05] is an array tabu, which stores a separate tabu
list for each week. For each week k, the list tabu[k] contains a triple 〈a, b, i〉,
where i is the first iteration in which golfers a and b can be swapped again in
that week. The time a pair of golfers stays in the tabu list is randomly drawn
from the interval [4, 100]. The set St(σ, k) denotes all swaps s from S−(σ)
such that s is not tabu in iteration k.

Aspiration. If a swap improves the best solution found so far, it is also
considered, even if it is tabu. The set S∗(σ, σ∗) is defined as

S∗(σ, σ∗) = {(t1, t2) ∈ S−(σ) | f(σ[x[t1]↔ x[t2]]) < f(σ∗)} (6.5)

where σ[x1 ↔ x2] denotes the schedule σ with the values of variables x1
and x2 swapped, x[〈i, j, k〉] is equivalent to x[i, j, k], and σ∗ denotes the best
solution found so far.

64

6.4 Memetic evolutionary programming

6.3.4 The tabu search algorithm

The tabu search algorithm proposed by Dotú and Hentenryck is summarised
in Algorithm 6.2. The initial and new configuration built in lines 2 and 12
must ensure that each golfer plays exactly once each week. One way is to
line up all players in their natural order in each week. Alternatively, one
can use variants of construction methods from Chapter 2, which can solve
several instances deterministically and provide good initial configurations
for others ([DH05]).

Algorithm 6.2 SGP-LS ([DH05])

1: for i← 1 to w do tabu[i]← Nil end for
2: σ∗ ← σ ← random configuration
3: k ← s← 0
4: while k ≤Max-Iter ∧ f(σ) > 0 do
5: select (t1, t2) ∈ St(σ, k) ∪ S∗(σ, σ∗) minimising f(σ[x[t1]↔ x[t2]])
6: τ ← Random([4,100])
7: tabu[week(t1)]← tabu[week(t1)] ∪ {〈σ(x[t1]), σ(x[t2]), k + τ〉}
8: σ ← σ[x[t1]↔ x[t2]]
9: if f(σ) < f(σ∗) then

10: σ∗ ← σ ; s← 0
11: else if s > Max-Stable then
12: σ ← random configuration ; s← 0
13: for i← 1 to w do tabu[i]← Nil end for
14: else
15: s++
16: end if
17: k++
18: end while

The algorithm is notable for not taking symmetries into account at all.
Nevertheless, it was shown to be very competitive with constraint-based
approaches in [DH05].

6.4 Memetic evolutionary programming

Cotta et al. present a memetic evolutionary programming approach towards
the SGP in [CDFH06], where Algorithm 6.2 is used as the local improvement
strategy. They report improvements over the results of [DH05] on many
instances, using lamarckian learning strategies. This makes their approach
the best metaheuristic method for solving SGP instances to date, and the
challenge therefore consists in matching their results as closely as possible.

65

6.5 A new GRASP for the SGP

6.5 A new GRASP for the SGP

In this section, we present a new greedy randomised adaptive search proce-
dure (GRASP) for solving SGP instances. The basic structure of a GRASP
for a minimisation problem as described by Feo and Resende in [FR95] is as
follows:

1. f∗ =∞

2. Repeat until stopping criterion:

(a) Generate a greedy randomised candidate solution x

(b) Find local optimum xl with local search starting from x

(c) If f(xl) < f∗ then

(i) f∗ = f(xl)

(ii) x∗ = xl

In our case, the stopping criterion is either a timeout, or the discovery
of a conflict-free schedule.

6.5.1 The greedy heuristic

The greedy heuristic used in our GRASP scheme is based on the observations
from Chapter 5. However, scheduling a pair of golfers with minimal freedom
is exactly the opposite of what is appropriate when using the heuristic in
combination with a local search method. Instead, we should try to maximise
the freedom inside groups, to “make room” for good local moves. The
intuition is that if freedom among the players of each group is high, the
probability that swaps lead to new conflicts decreases.

Our greedy heuristic therefore proceeds as follows: Let us first suppose
that p is even. Then the task of scheduling the players into groups in each
week can also be seen as scheduling pairs of players into groups. To produce
an initial configuration, the heuristic visits the weeks one after another. A
single week is produced as follows: The week’s groups are traversed one
after another. For each pair of adjacent positions in a group, the heuristic
needs to select a pair of players still remaining to be scheduled in the current
week. It selects the pair having maximal freedom with respect to the current
partial configuration. In addition, there is a parameter γ, with 0 ≤ γ ≤ 1,
that can be used to randomise the heuristic: In the case of ties, a random
choice is made among the pairs of players having maximal freedom with
probability γ. With probability 1 − γ, pairs are regarded as ordered, with
the numerically smaller player first, and the lexicographically smallest pair
is selected. After a pair of players was selected and is placed into a group, a
large number is subtracted as a penalty from that pair’s freedom in further
weeks, to discourage that pair from being selected again in a different group.

66

6.5 A new GRASP for the SGP

Other than that, the heuristic pays no attention to potential conflicts in a
group, and never undoes a choice of pairs.

The remaining case is when p is odd. Here, the heuristic can still work
with pairs of players, except for the last player in each group. With prob-
ability γ, that player is randomly selected from all players that are still
remaining to be scheduled in that week. With probability 1− γ, the numer-
ically smallest remaining player is selected.

The heuristic is readily generalised from pairs to larger sets of players,
although there is a clear trade-off between maximising freedom of groups
and efficiency.

6.5.2 The local search component

We aimed to keep the local search component as simple as possible. We
chose Algorithm 6.2 as our basis, and then simplified it further. In particu-
lar, we eliminated the restart component, since the search is now restarted
within the more general GRASP scheme. Also, based on experiments with
different lengths of tabu lists, we fixed the length of tabu lists to 10 instead
of imposing random limits. We also added random noise: If there was no
improvement for 4 iterations, two random swaps are made.

6.5.3 Experimental results

Our implementation consists of two programs: The first one, written in Pro-
log, generates initial configurations for given g, p, w and γ according to our
greedy heuristic. As in Section 5.3, we benefit from arbitrary precision arith-
metic to represent sets of players as bit vectors. In fact, we could reuse the
existing greedy heuristic from that section with very few modifications.

The second program, written in C++, is the local search component. It
is started with parameters g, p, w, and can also read an initial configuration.

We executed 10 runs for each instance g−p−w presented here, using an
Apple MacBook with a 2.16 GHz Intel Core 2 Duo CPU and 1GB RAM.
Conceptually, a run of a single instance proceeds as follows: First, the greedy
heuristic is used to generate five initial configurations with varying γ, in-
cluding 0, 0.1, 0.2, and two values drawn at random between 0.3 and 1. The
time it takes to generate an initial configuration for the benchmark instances
is negligible, i.e., at most half a second. Then the local search component
is run with each of those starting configurations for at most one minute. If
no solution is found in these tries, the search is restarted with that initial
configuration that yielded the minimum number of conflicts (and smallest γ,
in the case of ties) while it was run, and it is then run to completion or until
the timeout is reached.

We chose 20 minutes as the maximum running time of the algorithm,
since this is also the limit used in the benchmarks of the memetic algorithm

67

6.5 A new GRASP for the SGP

in [CDFH06], with which we wanted to allow a fair comparison. Many
instances took only a few seconds, and all but one of them consistently
finished well within the 20 minutes time limit. The only exception was
instance 10−6−7, which was solved only in two runs out of ten within the
time limit. We considered an instance solved if a solution was found in at
least one of the 10 runs we performed.

Our results are shown in Fig. 6.1. For various values of g and p, we
show groups of three bars, which denote the maximum w such that the
instance could be solved with (from left to right): Our GRASP scheme, the
best memetic algorithm introduced in [CDFH06], and local search alone as
reported in [DH05]. The latter values are similar to those we obtain if we run
the local search component in isolation. In particular, we cannot even solve
the 8−4−9 instance, let alone 8−4−10, without our greedy heuristic. For
each instance, the thin horizontal lines show the (optimistic) upper bound
and the best solution obtained with a mix of constraint-based formulations
and basic design-theoretic techniques as collected in [Har02], respectively.

It is clear from these figures that our approach is highly competitive on
other instances besides the original problem as well: On all tested instances,
it finds solutions for as many weeks as the best variant of the memetic
algorithm (surpassing it on 8−4−10 and 8−8−5), and surpasses plain local
search and constraint-based solutions in many cases.

6.5.4 New solutions for the 8−4−10 instance

The 8−4−10 instance of the SGP is of particular interest due to two reasons:
First, it is the optimal solution for “the” social golfer problem in the origi-
nal sense, which is problem number 10 in CSPLib, a benchmark library for
constraints ([GW99]). Second, being on the verge of solvability, the instance
was previously thought to be amenable only to design theoretic techniques
and constraint solvers due to its highly constrained nature. However, even
the most sophisticated constraint solvers are currently unable to solve the
instance. In contrast, by using the GRASP scheme outlined in this section,
solutions for this instance are readily generated. Two such solutions are
depicted in Fig. 6.2. They were found by varying the randomisation factor
of the greedy heuristic. Computation time was 11 and 4 minutes, respec-
tively. We used McKay’s dreadnaut program ([McK90]) on the extended
Levi graphs (see Section 2.11) of the two solutions to verify that they are
not isomorphic. The fact that we could obtain structurally different solu-
tions is an indication that the greedy heuristic is meaningful and does not
work only by accident. Both solutions are new in the sense that they are
not isomorphic to Aguado’s solution ([Agu04], see also Section 2.12).

It is left to explain why the greedy heuristic works so well on the 8−4−10
instance. While we are currently unable to give an analytical justification, we
believe that observing the solution process can give an important indication:

68

6.5 A new GRASP for the SGP

3 4 5 6

6 groups per week

size of groups

nu
m

be
r

of
 w

ee
ks

0
1

2
3

4
5

6
7

8

(a)

3 4 5 6 7

7 groups per week

size of groups

nu
m

be
r

of
 w

ee
ks

0
1

2
3

4
5

6
7

8
9

10

(b)

3 4 5 6 7 8

8 groups per week

size of groups

nu
m

be
r

of
 w

ee
ks

0
1

2
3

4
5

6
7

8
9

10

(c)

3 4 5 6 7 8 9

9 groups per week

size of groups

nu
m

be
r

of
 w

ee
ks

0
1

2
3

4
5

6
7

8
9

11
13

(d)

3 4 5 6 7 8 9 10

10 groups per week

size of groups

nu
m

be
r

of
 w

ee
ks

0
1

2
3

4
5

6
7

8
9

11
13

15

(e)

Figure 6.1: Solved number of weeks for g equal to (a) 6, (b) 7, (c) 8, (d) 9
and (e) 10, with various values of p. Each group of three bars represents the
maximum w obtained by (from left to right): Our GRASP, the best memetic
approach proposed in [CDFH06], and local search alone from [DH05]. The
thin horizontal lines show the best w found with constraint solvers ([Har02])
and optimistic upper bounds, respectively.

69

6.5 A new GRASP for the SGP

Group 1

Group 2

Group 3

Group 4

Group 5

Group 6

Group 7

Group 8

Group 1

Group 2

Group 3

Group 4

Group 5

Group 6

Group 7

Group 8

Week 1 Week 2 Week 3 Week 4 Week 5

Week 6 Week 7 Week 8 Week 9 Week 10

17

7

2

4

12

3

31

1

15

2

11

19

9

22

2

11

13

16

126

26

1

9

19

28

17

5

22

9

6

14 25

1

1

411

8

29

1828

9

28

10

2

5

3

8

8

30

20

3

29

27

18

5

1913

6

24

0

10

17

5

21

4

3

4

23

11

9

22

17

16

29

8

29

10

30

25

15

20

74 18

8

28

7

27

23

25

3

22

12

24

2

16

29

16

27

27

14

22 8

7

15

3

26

11

23

12

8

21

16

23

23

8

13

200

6

25

30

4

22

0

9

19

17

1

2

19

13

30

31

11

18

6

1827

25

2

21

31

21

12

6

11

19

0

26

27

29

0

13

15 12

6

21

0

3

6

1831

26

3

15

31

2

18

11

17

6

17

16

30

22

1

12

13

9

22

10

10

18

26

4

26

25

29

30

21

31

28

22

8

13

31

20

26

1331

25

4

9

16

30

23

7

14

28

14

14

23

1

200

30

4

21

8

0

31

29

27

16

31

28

1528

7

20

5

19

25

29

6

621

13

10

29

30

27

7

24

17

10

9

7

5

25

12

21

14

11

15

0

14

18

1312

30

27

10

28

1

23

1

20

15

5

17

19

19

2

27

26 5

24

18

17

2

16

14

22

0

14

16

15

10

24

20 24

24

4

15

7

24

24

7

23

10

3

21

20

26

19

23

9

20

24

5

3

25

28

14

5

11

12

12

Group 1

Group 2

Group 3

Group 4

Group 5

Group 6

Group 7

Group 8

Group 1

Group 2

Group 3

Group 4

Group 5

Group 6

Group 7

Group 8

Week 1 Week 2 Week 3 Week 4 Week 5

Week 6 Week 7 Week 8 Week 9 Week 10

19 9 3 8

28 25 18 5

4 1 15 6

14 11 20 0

13 23 30 21

16 10 29 22

7 2 27 17

31 26 12 24

24 2 30 4

18 13 10 8

20 15 19 21

1 29 5 7

23 12 11 16

26 6 28 0

3 31 27 25

14 17 9 22

9 15 0 27

7 28 4 31

25 26 2 1

10 5 12 30

20 6 3 17

24 29 23 18

14 8 16 21

11 22 19 13

16 0 25 24

17 23 31 8

5 26 13 3

30 6 7 19

18 22 20 1

11 2 15 10

21 12 9 28

29 4 14 27

15 17 18 12

19 24 5 14

7 11 26 8

25 22 4 21

3 29 0 30

13 6 16 27

28 10 23 1

2 9 20 31

0 5 2 8

11 29 6 31

28 27 22 30

15 26 23 14

19 10 17 25

12 13 4 20

18 9 7 16

1 24 21 3

20 10 27 24

7 22 12 0

8 15 30 25

23 6 9 5

11 18 3 4

26 29 21 17

14 13 28 2

16 19 31 1

14 18 31 30

20 23 7 25

9 4 10 26

22 6 8 24

19 12 2 29

28 15 3 16

27 11 5 21

13 0 1 17

17 11 24 28

9 25 13 29

30 16 20 26

27 12 1 8

31 22 5 15

2 18 21 6

19 23 0 4

14 10 7 3

1 30 11 9

6 12 14 25

24 13 7 15

21 31 0 10

28 20 29 8

4 17 16 5

26 27 19 18

2 23 22 3

Figure 6.2: Two new non-isomorphic optimal solutions for the original SGP,
instance 8−4−10

70

6.5 A new GRASP for the SGP

Group 1

Group 2

Group 3

Group 4

Group 5

Group 6

Group 7

Group 8

Group 1

Group 2

Group 3

Group 4

Group 5

Group 6

Group 7

Group 8

Week 1 Week 2 Week 3 Week 4 Week 5

Week 6 Week 7 Week 8 Week 9 Week 10

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

16 17 18 19

20 21 22 23

24 25 26 27

28 29 30 31

0 14 5

2 36 7

8 912 13

10 1114 15

16 1720 21

18 1922 23

24 2528 29

26 2730 31

0 16 7

2 34 5

8 914 15

10 1112 13

16 1722 23

18 1920 21

24 2530 31

26 2728 29

0 18 9

2 310 11

4 512 13

6 714 15

16 1724 25

18 1926 27

20 2128 29

22 2330 31

0 110 11

2 38 9

4 514 15

6 712 13

16 1726 27

18 1924 25

20 2130 31

22 2328 29

0 112 13

2 314 15

4 58 9

6 710 11

16 1728 29

18 1930 31

20 2124 25

22 2326 27

0 114 15

2 312 13

4 510 11

6 78 9

16 1730 31

18 1928 29

20 2126 27

22 2324 25

0 116 17

2 318 19

4 520 21

6 722 23

8 924 25

10 1126 27

12 1328 29

14 1530 31

0 118 19

2 316 17

4 522 23

6 720 21

8 926 27

10 1124 25

12 1330 31

14 1528 29

0 120 21

2 322 23

4 516 17

6 718 19

8 928 29

10 1130 31

12 1324 25

14 1526 27

(a)

Group 1

Group 2

Group 3

Group 4

Group 5

Group 6

Group 7

Group 8

Group 1

Group 2

Group 3

Group 4

Group 5

Group 6

Group 7

Group 8

Week 1 Week 2 Week 3 Week 4 Week 5

Week 6 Week 7 Week 8 Week 9 Week 10

9

7

29

24

29

0

13

1

23

19

12

0

8

10

20

5

12

9

326

12

0

30

22

24

19

16

13

16

7

15 1

23

2

013

2

17

238

22

30

6

5

26

30

18

25

28

6

25

3

5

7

26

1413

12

17

8

17

9

27

25

27

4

27

20

25

9

11

16

18

7

31

21

10

17

3

9

19

175 4

31

2

26

24

2

21

16

19

15

8

2

14

7

29

21

0

3

0 18

30

2

8

23

23

20

15

18

12

10

28

11

28

5

66

16

11

13

7

8

26

25

7

30

8

22

11

12

19

4

23

3

1

1812

18

29

13

10

27

27

27

26

3

1

24

25

20

21

10

30 31

17

5

6

29

29

1913

25

24

28

30

22

29

3

4

11

24

28

30

22

16

30

9

21

23

9

19

4

20

2

21

8

1

9

28

12

22

0

6

13

3

21

11

77

28

6

20

14

1

17

1

21

3

14

4

29

1

3131

24

12

21

4

18

31

14

27

22

24

17

1515

10

20

24

27

11

18

25

164

11

11

29

31

19

21

22

16

28

8

8

27

25

15

14

23

10

11

6

9

15

3128

25

5

31

22

1

13

20

22

23

5

16

18

14

20

7

26 26

6

0

23

13

14

2

26

15

20

17

2

28

2

16 14

15

10

0

26

24

4

17

27

15

19

29

3

5

1

14

9

31

6

10

12

19

30

0

10

4

18

5

(b)

Group 1

Group 2

Group 3

Group 4

Group 5

Group 6

Group 7

Group 8

Group 1

Group 2

Group 3

Group 4

Group 5

Group 6

Group 7

Group 8

Week 1 Week 2 Week 3 Week 4 Week 5

Week 6 Week 7 Week 8 Week 9 Week 10

9

7

29

24

29

31

13

1

23

16

12

6

17

2

2

5

17

21

326

26

0

30

22

24

19

22

17

30

7

13 1

11

29

011

2

17

238

22

28

6

5

6

8

4

25

28

6

25

3

5

7

26

1213

12

17

0

25

15

27

25

2

2

27

20

25

9

11

16

18

7

31

21

10

8

3

9

19

175 4

17

2

26

24

20

21

16

19

15

8

2

6

7

27

21

28

3

14 18

0

27

8

23

23

20

19

18

21

10

28

11

28

5

140

16

11

13

7

8

12

25

7

30

8

16

11

12

19

4

31

3

1

1812

20

4

13

28

27

19

27

26

3

1

26

31

20

21

10

30 0

16

5

26

29

21

1915

17

24

28

2

22

2

3

12

11

24

30

30

22

6

30

9

9

23

9

10

18

20

30

12

8

1

9

28

12

22

22

31

13

3

21

11

77

28

16

18

23

1

17

1

21

3

14

24

29

1

3131

4

4

21

6

14

6

14

27

22

24

12

1515

10

20

24

27

11

18

25

164

13

11

29

25

27

29

22

18

10

10

30

27

25

15

14

14

19

23

6

9

9

2328

25

5

31

0

1

13

22

20

23

5

18

18

24

20

7

26 26

6

8

23

13

19

0

26

15

20

17

10

0

4

16 14

31

10

2

24

14

29

13

29

15

15

29

3

5

1

15

9

31

4

10

14

19

30

0

8

4

16

5

(c)

Group 1

Group 2

Group 3

Group 4

Group 5

Group 6

Group 7

Group 8

Group 1

Group 2

Group 3

Group 4

Group 5

Group 6

Group 7

Group 8

Week 1 Week 2 Week 3 Week 4 Week 5

Week 6 Week 7 Week 8 Week 9 Week 10

9

7

29

27

29

31

13

1

20

16

12

6

17

2

2

5

17

21

326

26

0

30

22

24

19

22

17

31

7

13 1

11

29

011

2

17

238

5

28

6

5

6

8

4

10

28

22

25

3

5

7

26

1213

12

17

0

25

15

11

25

2

2

27

20

25

9

11

16

18

7

31

29

10

8

3

9

19

175 4

16

2

26

24

20

21

16

19

15

8

2

6

7

27

21

28

3

17 18

0

27

8

20

23

4

19

18

21

10

28

11

28

5

140

16

11

13

7

8

12

25

7

30

27

16

11

18

19

4

31

3

1

1812

20

4

13

28

27

19

27

26

3

1

26

31

20

21

10

30 0

14

6

26

29

21

1915

17

24

28

2

22

2

3

12

11

25

30

30

22

14

30

9

9

23

25

10

18

23

30

12

8

1

9

28

12

22

22

31

13

3

21

11

74

28

16

18

23

1

17

1

21

3

14

24

29

1

3131

4

4

21

6

14

6

14

27

22

24

12

1515

9

20

24

27

24

12

25

167

13

6

29

25

27

29

22

18

10

10

30

8

25

15

14

14

19

23

24

9

9

2328

11

5

31

0

1

13

22

20

23

5

18

18

24

20

7

26 26

6

8

23

13

19

0

26

15

20

17

10

0

4

16 14

30

10

2

24

6

29

13

29

15

15

21

3

5

1

15

9

31

4

10

14

19

30

0

8

23

16

5

(d)

Figure 6.3: Instance 8−4−10, local search with our greedy initial configura-
tion (γ = 0). Conflicts after (a) 0, (b) 10, (c) 100, (d) 500 iterations.

Fig. 6.3 shows different states of the local search component starting from a
greedy initial configuration with γ = 0, with conflict positions highlighted.
Notice that initially, every position is a conflict position.

For comparison, Fig. 6.4 shows what happens when the search is started
from the trivial initial configuration of simply lining up the players in order
for each week, with which we could solve the original SGP instance for a
maximum of only 8 weeks. When contrasting the distribution of conflicts
in the two figures, one effect of the greedy initial heuristic is apparent:
Conflicts become more concentrated, and several weeks become conflict-free
very early. In contrast, with a bad initial heuristic (Fig. 6.4), remaining
conflicts are dispersed throughout all weeks. We believe that Fig. 6.3 gives
a valuable suggestion about how the SGP could be successfully approached
with a completely different local search method, which explicitly encodes
a behaviour that is similar to the one found in this case. For example,
one could build conflict-free groups incrementally, while exchanging players
in existing weeks or dropping already built groups on occasion. Another
strategy could be to build several conflict-free weeks first, and then to only
consider swaps in other weeks for a certain number of iterations.

71

6.6 Conclusion

Group 1

Group 2

Group 3

Group 4

Group 5

Group 6

Group 7

Group 8

Group 1

Group 2

Group 3

Group 4

Group 5

Group 6

Group 7

Group 8

Week 1 Week 2 Week 3 Week 4 Week 5

Week 6 Week 7 Week 8 Week 9 Week 10

10

14

31

29

29

0

15

2

15

22

13

0

8

20

24

5

5

7

32

9

26

6

14

25

22

16

15

1

14

3 2

30

4

03

4

18

1916

28

25

30

10

17

29

20

31

21

12

0

6

3

7

17

911

1

17

16

7

11

27

23

30

8

27

12

27

18

11

16

10

14

31

26

13

18

6

3

22

1110 8

31

4

28

25

4

21

5

22

15

13

26

28

14

19

26

0

6

0 1

29

4

16

30

30

24

11

20

9

20

17

14

17

7

1212

16

7

26

3

9

21

19

7

21

16

28

22

24

19

28

11

6

2

2020

20

27

13

5

31

19

23

21

6

2

24

27

17

3

1

17 19

3

10

12

27

31

77

23

0

4

25

5

23

6

8

14

17

29

25

21

16

21

9

26

7

15

22

8

9

4

19

5

2

10

29

24

28

0

5

11

6

11

22

1414

25

12

24

13

2

18

1

26

6

28

8

31

2

2727

21

24

23

5

20

31

22

30

13

21

18

3030

9

1

24

19

11

5

25

98

15

22

19

23

3

15

9

16

25

8

1

23

26

15

5

23

12

3

12

18

7

2725

19

10

23

28

2

26

21

17

30

10

16

13

13

24

14

29 29

12

0

23

26

1

4

25

15

13

18

4

29

4

8 9

30

20

0

28

17

1

18

31

11

22

27

6

10

2

28

18

31

1

18

13

15

29

24

12

8

20

10

(a)

Group 1

Group 2

Group 3

Group 4

Group 5

Group 6

Group 7

Group 8

Group 1

Group 2

Group 3

Group 4

Group 5

Group 6

Group 7

Group 8

Week 1 Week 2 Week 3 Week 4 Week 5

Week 6 Week 7 Week 8 Week 9 Week 10

10

14

31

29

29

0

15

2

15

22

13

0

0

20

24

5

5

7

32

9

26

6

14

25

22

16

15

1

14

3 2

30

4

03

4

18

1920

28

25

30

10

17

29

20

31

21

12

8

6

3

7

17

911

1

17

16

7

11

27

23

30

8

27

8

27

18

11

16

10

14

31

26

13

18

6

3

22

1110 8

31

4

20

25

4

21

5

22

15

13

26

28

14

19

26

0

6

0 1

29

12

16

30

30

24

11

20

9

20

17

14

17

7

1212

24

7

26

3

9

21

19

7

21

16

28

22

24

19

24

11

6

2

2816

20

27

13

5

31

19

23

21

6

2

24

27

17

3

1

17 19

3

10

12

27

31

77

23

4

0

25

5

23

6

8

14

17

29

25

21

16

21

9

26

7

15

22

8

9

4

19

5

2

10

29

24

28

0

5

11

6

11

22

1414

25

12

24

13

2

18

1

26

6

28

8

31

2

2727

21

24

23

5

20

31

22

30

13

21

18

3030

9

1

16

19

11

5

25

98

15

22

19

23

3

15

9

16

25

8

1

23

26

15

5

23

4

3

12

18

7

2725

19

10

23

28

2

26

21

17

30

10

16

13

13

24

14

29 29

12

0

23

26

1

4

25

15

13

18

4

29

4

12 9

30

20

12

28

17

1

18

31

11

22

27

6

10

2

28

18

31

1

18

13

15

29

28

0

8

20

10

(b)

Group 1

Group 2

Group 3

Group 4

Group 5

Group 6

Group 7

Group 8

Group 1

Group 2

Group 3

Group 4

Group 5

Group 6

Group 7

Group 8

Week 1 Week 2 Week 3 Week 4 Week 5

Week 6 Week 7 Week 8 Week 9 Week 10

27

14

31

29

18

28

15

2

15

22

13

24

3

20

8

27

5

19

222

22

26

6

14

5

9

8

15

9

14

27 2

12

24

03

4

18

1920

0

13

30

26

17

5

4

11

21

16

8

31

0

7

0

511

23

25

16

7

11

3

23

30

16

13

8

27

4

11

4

10

11

31

26

29

25

1

3

22

1127 8

31

4

20

9

21

21

5

10

15

13

26

28

9

19

26

20

10

5 6

25

12

16

9

27

4

14

0

31

20

30

14

9

27

2220

24

7

26

3

17

20

19

7

21

21

4

12

22

19

24

11

6

2

2816

12

10

5

29

23

24

23

16

8

2

20

10

29

3

18

17 25

3

10

24

27

31

127

23

4

0

25

28

15

6

21

14

13

29

15

21

0

21

23

26

18

23

22

24

1

16

19

5

12

2

29

24

8

16

23

14

6

11

22

1414

18

28

0

1

2

18

29

26

6

5

28

31

2

277

21

19

17

9

8

9

15

1

17

8

18

1730

30

1

16

7

6

0

17

256

15

24

19

1

3

25

14

12

1

4

25

28

26

15

25

5

4

3

7

18

7

2729

19

10

31

12

13

10

21

23

30

6

28

2

18

30

11

13 29

12

17

9

26

1

8

19

3

13

31

18

29

28

12 9

30

20

22

16

17

13

1

31

11

22

30

6

10

2

23

7

13

30

1

25

15

17

28

0

20

24

10

(c)

Group 1

Group 2

Group 3

Group 4

Group 5

Group 6

Group 7

Group 8

Group 1

Group 2

Group 3

Group 4

Group 5

Group 6

Group 7

Group 8

Week 1 Week 2 Week 3 Week 4 Week 5

Week 6 Week 7 Week 8 Week 9 Week 10

19

2

31

29

8

28

15

26

15

3

26

24

3

8

8

18

5

19

1113

22

26

27

23

4

9

8

10

9

14

27 25

12

24

223

21

29

1924

0

27

9

2

4

5

4

11

21

25

7

31

0

10

27

511

14

30

0

20

11

22

23

30

16

3

21

27

23

29

29

16

11

2

12

5

23

12

21

9

1127 8

31

4

20

9

3

5

25

10

30

16

1

28

16

19

18

20

10

5 21

2

4

16

9

27

4

14

18

31

15

4

14

20

18

2222

24

7

1

3

17

15

19

27

28

21

23

30

22

19

6

11

6

2

280

12

15

28

29

23

3

23

0

10

2

14

30

22

3

17

17 6

3

26

24

27

6

127

13

15

31

25

0

15

29

4

20

13

13

15

12

17

21

22

21

18

23

10

14

1

16

8

5

12

21

29

24

0

24

25

31

26

11

30

1414

18

28

0

1

2

26

25

1

6

5

28

15

18

227

7

19

17

2

8

9

14

1

17

5

13

1724

30

26

16

8

20

24

17

256

15

16

20

31

31

7

14

12

1

4

16

28

8

21

25

5

29

3

7

18

7

129

19

20

31

20

13

10

28

23

10

6

9

2

18

30

11

13 29

12

17

26

26

1

25

19

20

9

25

18

27

28

12 9

30

8

6

16

0

13

31

6

11

1

26

6

13

2

23

7

13

30

7

24

19

17

4

0

10

22

10

(d)

Figure 6.4: Instance 8−4−10, local search using a trivial initial configura-
tion. Conflicts after (a) 0, (b) 10, (c) 100, (d) 500 iterations.

6.6 Conclusion

We have described an existing local search approach for solving SGP in-
stances, which avoids many of the invalid intermediate configurations that
can arise when solving SGP instances with Walksat.

We have presented a GRASP scheme for the SGP, in which we used a
simplified version of the existing algorithm as the local search component.
As greedy heuristic, we used the opposite of the greedy heuristic presented
in Section 5.3, which is based on the concept of freedom of sets of players.
Our heuristic is readily randomised and generalised, and was shown to im-
prove results obtained by local search alone. In particular, we have obtained
new solutions for the 8−4−10 instance. This makes our approach the first
metaheuristic method that solves the original problem optimally, and also
surpasses current constraint solvers on this instance. In addition, our ap-
proach is among the simplest and was shown to be highly competitive with
other metaheuristic and constraint-based techniques on other instances as
well, even though it does not take symmetries into account at all.

Metaheuristic approaches can easily cope with constraint variations by
changing the objective function, but are typically incomplete and therefore
cannot be used to show that an instance cannot be solved.

72

7 Conclusion and future work

We have presented and discussed the most prominent existing approaches
for solving SGP instances, which are design theoretic techniques, SAT en-
codings, constraint-based approaches and metaheuristics methods. Each of
these methods was shown to have advantages and limitations, and several
interesting opportunities for future research present themselves.

Design theoretic techniques (Chapter 2) are fast and powerful when ap-
plicable, but there is currently no general deterministic method that can
solve any given SGP instance or show that it cannot be solved. Also, deter-
ministic construction methods typically cannot handle even slight variations
of constraints, or partially instantiated schedules. As the SGP is closely re-
lated to finite geometries, Galois fields, and other objects from different
branches of discrete mathematics, new results from these areas could also
provide further insights into the SGP.

SAT encodings (Chapter 3) are attractive for a number of reasons: SAT
solvers are often freely available and have improved continuously in recent
years. There are complete SAT solvers, such as SATO, which can be used
to show that an instance cannot be solved. Using our SAT formulation, we
have solved the original SGP instance for 7 weeks. This is not competitive
with other approaches that we have presented. However, there is hope that
alternative problem formulations or symmetry breaking constraints exist,
which could further reduce computation time. In addition, SAT formulations
might provide new insights into SGP instances due to their simplicity. By
analysing SAT encodings of SGP instances that are known to be unsolvable,
one could arrive at better bounds and hardness estimates of other instances,
about which only very little is known so far. The tools we developed as part
of this thesis make working with SAT encodings less error-prone.

Several similar conclusions can be drawn for constraint programming for-
mulations (Chapter 4): Constraint solvers are becoming increasingly more
powerful as new propagation algorithms are discovered, and existing problem
formulations automatically benefit from such improvements. Constraint-
based solutions are typically complete and can thus also be used to show
that an instance cannot be solved. The original SGP instance has gener-
ated much interest from the CP community, but so far no constraint solver
was able to solve the instance optimally. Solving this instance remains a
challenging problem for authors of constraint solvers, and further improve-
ments of propagation algorithms and variable selection strategies seem to
be necessary to solve the instance optimally with constraint-based methods.
A new free constraint solver that we developed lets users experiment with
an advanced existing CLP(FD) formulation of the SGP.

Metaheuristic methods (Chapter 6) are typically incomplete and there-
fore cannot be used to show that an instance cannot be solved. However,
they are easily adapted to slight constraint variations and are very competi-

73

tive with constraint-based approaches on many instances. By combining an
existing local search method with a new greedy heuristic (Chapter 5), we
have obtained new solutions for the original SGP instance, 8−4−10. Greedy
heuristics for the SGP have not received much attention in the literature so
far, and better heuristics might still be discovered.

It is especially interesting to see how various approaches can benefit
from each other, of which we saw several examples: Symmetry breaking
constraints used in SAT encodings can also be of use in CLP formulations,
and constructions from design theory can give useful initial configurations
for metaheuristic methods. It would also be interesting to use schedules built
with our greedy heuristic as initial configurations for SAT-based approaches.

74

A Creating portable animations

We include some of the PostScript definitions that we used to create anima-
tions and static pictures for presentation purposes. In addition to making
our figures and results completely reproducible, these definitions can be
very helpful during development. It is our hope that they provide a useful
starting point for others too. At the very least, they show that obtaining
customised animations of search processes need not come at great expense,
and can be done in a highly transparent and portable way. As we have
shown on several occasions in this thesis, observing animations of solution
processes can give valuable suggestions for alternative strategies in addition
to being interesting and useful in its own right.

Fig. A.1 shows the definitions used to visualise the constraint solving
process for N -queens. Fig. A.2 (a) shows an example of its usage and
Fig. A.2 (b) shows the resulting picture.

1 /init { /N exch def 322 N div dup scale −1 −1 translate
2 /Palatino−Roman findfont 0.8 scalefont setfont
3 0 setlinewidth
4 1 1 N { 1 1 N { 1 index c } for pop } for } bind def
5 /showtext { 0.5 0.28 translate
6 dup stringwidth pop −2 div 0 moveto 1 setgray show} bind def
7 /i { gsave translate 0.5 setgray 0 0 1 1 4 copy rectfill 0 setgray
8 rectstroke grestore } bind def
9 /q { gsave translate 0 0 1 1 rectfill (Q) showtext grestore }
10 bind def
11 /c { gsave translate 1 setgray 0 0 1 1 4 copy rectfill 0 setgray
12 rectstroke grestore } bind def

Figure A.1: PostScript definitions used to visualise N -queens

2 init
1 1 q
1 2 q
1 2 c
2 2 i

(a)

Q

Q

(b)

Figure A.2: (a) PostScript instructions and (b) the resulting picture

Fig. A.3 shows the definitions used to visualise the constraint solving and
local search process for the SGP. Fig. A.4 shows an example of its usage
and the resulting picture.

The intended usage is that such instructions are generated by a program
and directly fed to a running PostScript viewer to see the animation in
real-time. If PostScript language level 2 is enabled via

systemdict /.setlanguagelevel known { 2 .setlanguagelevel} if

then copypage can be used to update the animation when necessary.

75

1 /maxplayers 21 def
2

3 /showtext { 0.5 0.25 translate
4 dup stringwidth pop −2 div 0 moveto 0 setgray show } bind def
5

6 /groups { gsave lowerleft −3 G 0.35 add moveto
7 1 1 G { 0 −1 rmoveto gsave 0.7 dup scale (Group) show
8 5 string cvs show grestore } for grestore } bind def
9

10 /init { /W exch def /P exch def /G exch def
11 500 maxplayers P idiv dup P mul add 1 sub div dup scale
12 /Palatino−Roman findfont 0.8 scalefont setfont
13 4 2 translate 0 setlinewidth 1 maxplayers P idiv W { groups } for
14 1 1 W { gsave dup lowerleft P 2 div
15 1 index maxplayers P idiv le { G 0.4 add } { −1 } ifelse translate
16 /Palatino−Bold findfont 0.75 scalefont setfont
17 5 string cvs (Week) dup stringwidth pop 2 index stringwidth pop
18 add −2 div 0 moveto show show grestore } for
19 1 1 G { 1 1 P { 1 1 W { 3 copy c pop } for pop } for pop } for
20 } bind def
21

22 /lowerleft { dup P mul maxplayers le
23 { G 1 add } { maxplayers P idiv sub 0 } ifelse
24 exch 1 sub dup P mul add exch translate } bind def
25

26 /gcoords { lowerleft 1 sub exch G sub neg translate } bind def
27 /r { 1 setgray 0 0 1 1 4 copy rectfill 0 setgray rectstroke } bind def
28 /g { gsave gcoords r showtext grestore } bind def
29 /c { gsave gcoords r grestore } bind def
30 /p { gsave gcoords 1 0.5 0.5 setrgbcolor 0 0 1 1 4 copy
31 rectfill 0 setgray rectstroke showtext grestore } bind def

Figure A.3: PostScript definitions used to visualise the SGP

2 3 1 init
(5) 1 2 1 g
(6) 1 3 1 g
1 3 1 c
(5) 1 1 1 p

(a)

Group 1

Group 2

Week 1

5 65

(b)

Figure A.4: (a) PostScript instructions and (b) the resulting picture

76

B Bibliography

References

[Agu04] Alejandro Aguado. A 10 days solution to the social golfer prob-
lem. Manuscript, 2004.

[And97] Ian Anderson. Combinatorial designs and tournaments. Oxford
Clarendon Press, 1997.

[Bar99] Roman Barták. Constraint programming: In pursuit of the holy
grail. In Proceedings of the Week of Doctoral Students (WDS),
Prague, Czech Republic, 1999.

[Bar01] Roman Barták. Filtering algorithms for tabular constraints. In
Proceedings of CP2001 Workshop CICLOPS, 2001.

[BB05] Nicolas Barnier and Pascal Brisset. Solving Kirkman’s schoolgirl
problem in a few seconds. Constraints, 10(1):7–21, 2005.

[BR49] R. H. Bruck and H. J. Ryser. The nonexistence of certain finite
projective planes. Canad. J. Math., 1:88–93, 1949.

[Car05] Mats Carlsson. CLP(FD) formulation for the SGP, SICStus
demonstration program, 2005.

[CD96] C. H. Colbourn and J. H. Dinitz. The CRC Handbook of Com-
binatorial Designs. CRC Press, 1996.

[CDFH06] Carlos Cotta, Iván Dotú, Antonio J. Fernández, and Pascal Van
Hentenryck. Scheduling social golfers with memetic evolutionary
programming. In Hybrid Metaheuristics, volume 4030 of Lecture
Notes in Computer Science, pages 150–161. Springer, 2006.

[CGLR96] James M. Crawford, Matthew L. Ginsberg, Eugene M. Luks,
and Amitabha Roy. Symmetry-breaking predicates for search
problems. In KR, pages 148–159, 1996.

[Col84] Charles J. Colbourn. The complexity of completing partial latin
squares. Discrete Appl. Math., 8:25–30, 1984.

[Col99] Charles J. Colbourn. A Steiner 2-design with an automorphism
fixing exactly r + 2 points. Journal of Combinatorial Designs,
7:375–380, 1999.

[Coo71] Stephen A. Cook. The complexity of theorem proving proce-
dures. In STOC71, pages 151–158, 1971.

77

REFERENCES

[DH05] Iván Dotú and Pascal Van Hentenryck. Scheduling social golfers
locally. In CPAIOR, volume 3524 of Lecture Notes in Computer
Science, pages 155–167. Springer, 2005.

[DL02] Mireille Ducassé and Ludovic Langevine. Automated analysis of
CLP(FD) program execution traces. Lecture Notes in Computer
Science, 2401, 2002.

[DLL62] M. Davis, G. Logemann, and D. Loveland. A machine program
for theorem-proving. Communications of the ACM, 5:394–397,
1962.

[Dou94] Douglas R. Stinson. Universal hashing and authentication codes.
Designs, Codes and Cryptography, 4:369–380, 1994.

[dSC06] Anderson Faustino da Silva and Vı́tor Santos Costa. The design
and implementation of the YAP compiler: An optimizing com-
piler for logic programming languages. In ICLP, volume 4079 of
LNCS, pages 461–462. Springer, 2006.

[Ert90] M. Anton Ertl. Coroutining und Constraints in der Logik-
Programmierung. Diplomarbeit, Technische Universität Wien,
Austria, 1990. In German.

[Eul82] Leonhard Euler. Recherches sur une nouvelle espèce de quarrés
magiques. Verh. Zeeuws Gen. Weten. Vlissingen, 9:85–239, 1782.

[FFH+02] Pierre Flener, Alan M. Frisch, Brahim Hnich, Zeynep Kiziltan,
Ian Miguel, Justin Pearson, and Toby Walsh. Breaking row and
column symmetries in matrix models. Lecture Notes in Computer
Science, 2470, 2002.

[FHK+02] Alan Frisch, Brahim Hnich, Zeynep Kiziltan, Ian Miguel, and
Toby Walsh. Global constraints for lexicographic orderings. Lec-
ture Notes in Computer Science, 2470, 2002.

[FR95] T. A. Feo and M. G. C. Resende. Greedy randomized adaptive
search procedures. J. of Global Optimization, 6:109–133, 1995.

[FSC04] François Fages, Sylvain Soliman, and Rémi Coolen. CLPGUI: A
generic graphical user interface for constraint logic programming.
Constraints, 9(4):241–262, 2004.

[Gal85] Hervé Gallaire. Logic programming: Further developments. In
SLP, pages 88–96, 1985.

[GKP95] Daniel Gordon, Greg Kuperberg, and Oren Patashnik. New con-
structions for covering designs. Journal of Combinatorial De-
signs, 4:269–284, 1995.

78

REFERENCES

[GL05] I.P. Gent and I. Lynce. A SAT encoding for the social golfer
problem. IJCAI’05 workshop on Modelling and Solving Problems
with Constraints, 2005.

[GW99] Ian P. Gent and Toby Walsh. CSPLib: A benchmark library
for constraints. In 5th Int. Conf. on Principles and Practice of
Constraint Programming, 1999.

[Har02] Warwick Harvey. Warwick’s results page for the social golfer
problem. http://www.icparc.ic.ac.uk/∼wh/golf/, 2002.

[HBC70] M. Y. Hsiao, D. C. Bossen, and R. T. Chien. Orthogonal
Latin square codes. IBM Journal of Research and Development,
14(4):390–394, 1970.

[HE80] R. M. Haralick and G. L. Elliot. Increasing tree search effi-
ciency for constraint satisfaction problems. Artificial Intelligence,
14:263–313, 1980.

[HW05] Warwick Harvey and Thorsten Winterer. Solving the MOLR and
social golfers problems. In CP, volume 3709 of Lecture Notes in
Computer Science, pages 286–300. Springer, 2005.

[JL87] Joxan Jaffar and Jean-Louis Lassez. Constraint logic program-
ming. In POPL, pages 111–119, 1987.

[Kir47] T.P. Kirkman. On a problem in combinations. Cambridge and
Dublin Math. J., 2:109–204, 1847.

[LR97] C. C. Lindner and C. A. Rodger. Design theory. CRC Press,
1997.

[LTS86] C. W. H. Lam, L. Thiel, and Stan Swiercz. The nonexistence
of code words of weight 16 in a projective plane of order 10. J.
Comb. Theory, Ser. A, 42(2):207–214, 1986.

[Lyn05] I. Lynce. A SAT encoding for the social golfer problem: Bench-
mark description. 8th International Conference on Theory and
Applications of Satisfiability Testing (SAT0’05), 2005.

[McK90] Brendan McKay. Nauty user’s guide (version 1.5). Technical
report, Dept. Comp. Sci., Australian National University, 1990.

[MS00] Joao P. Marques-Silva. Algebraic simplification techniques for
propositional satisfiability. In Proc. of the 6th Int. Conf. on Prin-
ciples and Practice of Constraint Programming, 2000.

79

REFERENCES

[NRS97] Ulrich Neumerkel, Christoph Rettig, and Christian Schallhart.
Visualizing solutions with viewers. In Workshop on Logic Pro-
gramming Environments, pages 43–50, 1997.

[PG83] Paul Pritchard and David Gries. The seven-eleven problem.
Technical Report TR83-574, Cornell University, Computer Sci-
ence Department, September 1983.

[Pre01] Steven Prestwich. First-solution search with symmetry breaking
and implied constraints. In Proceedings of the CP’01 Workshop
on Modelling and Problem Formulation, 2001.

[Rég94] Jean-Charles Régin. A filtering algorithm for constraints of dif-
ference in CSPs. In AAAI, pages 362–367, 1994.

[SF94] Daniel Sabin and Eugene C. Freuder. Contradicting conventional
wisdom in constraint satisfaction. In ECAI, pages 125–129, 1994.

[Sho94] V. Shoup. Fast construction of irreducible polynomials over finite
fields. Journal of Symbolic Computation, 17(5):371–391, 1994.

[SKC93] Bart Selman, Henry Kautz, and Bram Cohen. Local search
strategies for satisfiability testing. Second DIMACS Implemen-
tation Challenge, 1993.

[Sut63] I. E. Sutherland. SKETCHPAD: A Man-Machine Graphical
Communications System. Technical Report 296, MIT, 1963.

[Tar00] G. Tarry. Le problème de 36 officiers. Compte Rendu de l’Assoc.
française pour l’avanc. des sciences, 1:122–123, 1900.

[Wal75] D. L. Waltz. Understanding line drawings of scenes with shad-
ows. In P. Winston, editor, The Psychology of Computer Vision.
McGraw-Hill, New York, 1975.

[Wie03] Jan Wielemaker. An overview of the SWI-Prolog programming
environment. In Proc. of the 13th Int. Workshop on Logic Prog.
Environments, pages 1–16, December 2003.

[WNS97] Mark Wallace, Stefano Novello, and Joachim Schimpf. ECLiPSe:
A platform for constraint logic programming. Technical report,
IC-Parc, Imperial College, London, 1997.

[Yat36] F. Yates. Incomplete randomized blocks. Ann. Eugenics, 7:121–
140, 1936.

[Zha97] H. Zhang. SATO: An efficient propositional prover. Lecture Notes
in Computer Science, 1249, 1997.

80

Index

C(σ), 64
N(n), 16
PC(x), 58
S−(σ), 64
#σ(a, b), 63
γ, 66
〈i, j, k〉, 64
S∗(σ, σ∗), 64
σ, 63
σ[x1 ↔ x2], 64
ϕC(S), 58
f(σ), 64
m[a, b], 63
(0,1)-design, 7
7-11 problem, 38

affine plane, 11
all different, 39, 49
animations, 32
aspiration, 64

backtracking, 11, 18, 30, 45, 48, 59
BIBD, 6
block, 6
Bus error, 31

CLP, 37
CLP(FD), 38
comp.constraints, 19
comp.lang.prolog, 48
complete, 16, 55, 73
completion problem, 14
computation time, 41
conflict position, 64
consistency, 40
constraint

propagation, 40
solver, 37, 40

constraints, 37
CP, 37, 73
CSP, 37, 41, 42

design, 6
DIMACS, 32
domain, 37
dreadnaut, 18, 68

ECLiPSe, 37, 45, 48, 49
Euclidean

parallel axiom, 11
plane, 11

Euler’s officer problem, 3, 15

factorisation, 38
Fano plane, see seven-point plane
finite

affine plane, 11
geometry, 11
incidence structure, 11
projective plane, 10, 11

first-fail, 42, 59
flip, 62
freedom, 58, 66

Galois field, 16, 73
GF(n), see Galois field
global consistency, 40
Graeco-Latin squares, 15
graph, 17, 40
GRASP, 66
GSAT, 62
GUPU, 43

Herbrand terms, 37

implied constraint, 50
incidence structure, 11
inconsistent, 39
inner node, 41, 42
instantiation order, 41

Kirkman triple system, see KTS
Kirkman’s schoolgirl problem, 10, 31,

33, 59
KTS, 10

81

INDEX

labeling, 40
ladder matrix, 22, 23
lamarckian learning, 65
Latin square, 12
leaf, 42
Levi graph, 17, 68
logic programming, 37

memetic algorithm, 65
MOLS, 15
multiplication table, 49
mutually orthogonal, 15

N -queens, 44, 75
NP, 14, 21
NP-complete, 14, 21

order, 11
orthogonality, 15

parallel
class, 8
lines, 11

point, 11
PostScript, 44, 75, 76
prime factor, 38
projective plane, 11
Prolog, 33, 37, 43, 51, 59, 67
propagation, 40, 43

quadrangle, 11
queens, 44, 75

random
noise, 62, 67
walk, 62

reified constraint, 44
relation, 37
resolution, 8
resolution class, 8
resolvability, 8
resolvable, 10

SAT, 21, 62
SATO, 28, 31, 73
scene labelling, 37

sci.op-research, 3, 18
seven-eleven problem, 38
seven-point plane, 7, 10
SGP, 3
SICStus Prolog, 45, 48, 51
singleton set, 40
social golfer problem, 3
socialisation, 22, 25, 27, 49
Steiner triple system, 8, 10
STS, 8, 10
subtrees, 42
Sudoku

critical set, 39
Latin square, 39
puzzle, 39

swap, 64
SWI-Prolog, 51
symmetry, 28, 48, 50
symmetry breaking, 27

table, 49
tabu

list, 64, 67
search, 65

tournament scheduling, 8

value selection, 43
visualisations, 43

Walksat, 31, 32, 62, 63

YAP, 51

82

	Abstract
	Acknowledgements
	Introduction
	Problem statement
	Applications of the SGP
	Computational complexity of the SGP
	Goals of this thesis
	Main results of this thesis
	Further organisation of this thesis

	Design theoretic techniques
	Introduction
	Balanced incomplete block designs
	Steiner triple systems
	Resolvable designs
	Kirkman triple systems
	Finite projective planes
	Affine planes
	Latin squares
	The computational complexity of the SGP
	Orthogonal Latin squares
	Isomorphic designs
	Solving the original SGP instance
	Conclusion

	SAT formulations
	Introduction
	Reasons for SAT formulations
	The SAT formulation by Gent and Lynce
	Revisiting the SAT formulation by Gent and Lynce
	Improving the SAT formulation by Gent and Lynce
	Experimental results
	Symmetry breaking
	Experimental results again
	More symmetry breaking
	Working with SAT instances
	Conclusion

	Constraint programming formulations
	Introduction
	Constraint logic programming
	CLP(FD)
	Example: Sudoku
	Constraint propagation and search
	Selection strategies for variables and values
	Visualising the constraint solving process
	CLP formulations for the SGP
	An ECLiPSe formulation of the SGP
	A SICStus CLP(FD) formulation of the SGP

	A new finite domain constraint solver
	Experimental results
	Conclusion

	A new greedy heuristic for the SGP
	An important observation
	Freedom of sets of players
	A greedy heuristic for the SGP

	Metaheuristic methods
	Introduction
	Metaheuristic SAT solving
	Local search for the SGP
	The model
	The neighbourhood
	The tabu component
	The tabu search algorithm

	Memetic evolutionary programming
	A new GRASP for the SGP
	The greedy heuristic
	The local search component
	Experimental results
	New solutions for the 8-4-10 instance

	Conclusion

	Conclusion and future work
	Creating portable animations
	Bibliography
	Index

