
A Constraint Programming Application for
Rotating Workforce Scheduling

Markus Triska and Nysret Musliu

Database and Artificial Intelligence Group
Vienna University of Technology

{triska,musliu}@dbai.tuwien.ac.at

Abstract. We describe CP-Rota, a new constraint programming appli-
cation for rotating workforce scheduling that is currently being developed
at our institute to solve real-life problems from industry. It is intended
to complement FCS, a previously developed application. The advantages
of CP-Rota over FCS are a significantly smaller and more maintainable
code base, portability across a range of different language implemen-
tations and a more declarative approach that makes extensions easier
and mistakes less likely. Our benchmarks show that CP-Rota is already
competitive with FCS and even outperforms it on several hard real-life
instances from the literature.

Keywords: Staff Scheduling, Cyclic Schedule, Manpower Scheduling

1 Introduction

Computerized workforce scheduling has interested researchers for over 30 years.
To solve rotating workforce scheduling problems, different approaches have been
used in the literature, including exhaustive enumeration ([5], [2]), constraint
(logic) programming, genetic algorithms ([8]) and local search methods.

In the present paper, we describe CP-Rota, a new constraint application for
rotating workforce scheduling that is currently being developed at our institute
to solve real-life problems from industry. It is intended to complement FCS, a
previously developed application that is currently commercially used in many
companies in Europe. CP-Rota builds upon, contributes to and improves previ-
ous constraint programming approaches to rotating workforce scheduling in the
following ways:

– CP-Rota is written in portable Prolog and will eventually be released under
a permissive licence to benefit both researchers and practitioners. Much of
its code is already available on request at the time of publication.

– CP-Rota implements new allocation strategies (available as options for users
to choose) that we discovered and discuss in this paper, which yield signifi-
cantly improved performance on some real-life instances.

– Our benchmarks on real-life instances show the tremendous potential of con-
straint programming in rotating workforce scheduling, also and especially
due to using different language implementations where they excel.

2 Related work

Many different approaches for solving rotating workforce instances are docu-
mented in the literature. Balakrishnan and Wong [1] solved a problem of rotating
workforce scheduling by modeling it as a network flow problem. Laporte [6] con-
sidered developing the rotating workforce schedules by hand and showed how the
constraints can be relaxed to get acceptable schedules. Musliu et al. [9] proposed
and implemented a method for the generation of rotating workforce schedules,
which is based on pruning the search space by involving the decision maker dur-
ing the generation of partial solutions. The algorithms have been included in
a commercial product called First Class Scheduler (FCS) [4], which is used by
many companies in Europe. In [10], Musliu applied a min-conflicts heuristic in
combination with tabu search. Although this yields good performance on many
instances, the resulting search method is incomplete and its results are there-
fore not directly comparable with FCS. This paper also introduced 20 real-life
problems collected from different areas in industry and the literature. 1

The use of constraint logic programming for rotating workforce scheduling
was first shown by Chan in [3]. Recently, Laporte and Pesant [7] have also
proposed a constraint programming algorithm for solving rotating workforce
scheduling problems, implemented in ILOG and requiring custom extensions.

3 The rotating workforce scheduling problem

With CP-Rota and in the present paper, we focus on a specific variant of a
general workforce-scheduling problem, which we formally define in this section.
The following definition is from [9] and proved to be able to satisfactorily handle
a broad range of real-life scheduling instances in commercial settings. A rotating
workforce scheduling instance as discussed in the present paper consists of:

– n: Number of employees.
– A: Set of m shifts (activities) : a1, a2, . . . , am.
– w: Length of the schedule. A typical value is w = 7, to assign one shift type

for each day of the week to each employee. The total length of a planning
period is n× w due to the schedule’s cyclicity as discussed below.

– R: Temporal requirements matrix, an m×w-matrix where each element Ri,j

shows the required number of employees that need to be assigned shift type i
during day j. The number oj of day-off “shifts” for a specific day j is implicit
in the requirements and can be computed as oj = n−

∑n
i=1 Ri,j .

– Sequences of shifts not permitted to be assigned to employees. For example,
one such sequence might be ND (Night Day): after working in the night shift,
it is not allowed to work the next day in the day shift. A typical rotating
workforce instance forbids several shift sequences, often due to legal reasons
and safety concerns.

1 Examples available from http://www.dbai.tuwien.ac.at/staff/musliu/benchmarks/

– MINs and MAXs: Each element of these vectors shows, respectively, the
required minimal and permitted maximal length of periods of consecutive
shifts of the same type.

– MINw and MAXw: Minimal and maximal length of blocks of consecutive
work shifts. This constraint limits the number of consecutive days on which
the employees can work without having a day off.

The task in rotating workforce scheduling is to construct a cyclic schedule,
which we represent as an n×w matrix Sn,w ∈ A ∪ {day-off}. Each element Si,j

denotes the shift that employee i is assigned during day j, or whether the em-
ployee has time off. In a cyclic schedule, the schedule for one employee consists
of a sequence of all rows of the matrix S.

The task is called rotating or cyclic scheduling because the last element of
each row is adjacent to the first element of the next row, and the last element of
the matrix is adjacent to its first element. Intuitively, this means that employee i
(i < n) assumes the place (and thus the schedule) of employee i + 1 after each
week, and employee n assumes the place of employee 1. This cyclicity must be
taken into account for the last three constraints above.

In the present paper, we consider the generation of a single schedule that
satisfies all the hard constraints given in the problem definition. Fulfilling all
these constraints is usually sufficient in practice. The same constraints that we
use in this paper are used in the commercial software FCS for generating rotating
workforce schedules. This system has been used since 2000 in practice for many
companies in Europe and the scheduling variant we discuss in this paper proved
to be sufficient for a broad range of uses. However, FCS has several shortcomings
that led us to consider constraint programming as an alternative approach. We
discuss these shortcomings and their remedies with CP-Rota in the next section.

4 Shortcomings of FCS and their remedies in CP-Rota

Although FCS has been in commercial use since 2000 in several companies and
proved to be an acceptable solution for many applications in practice, it has
several disadvantages that hinder its further development:

– The code base of FCS has gotten quite large and hard to maintain. This
makes user modifications difficult and error-prone. New scheduling ideas
cannot be rapidly prototyped but require substantial development effort.

– FCS was implemented in Visual Basic and thus depends on essentially a sin-
gle supported language implementation, which is in addition also not freely
available. This complicates the sharing of code with other researchers and
practitioners for joint development and turns every mistake in the language
implementation into a potentially show-stopping problem.

– From [10], it is known that local search approaches – although incomplete –
can significantly outperform FCS on some instances. Clearly, it is highly
desirable to improve the running times of FCS to more closely match such
competing approaches while retaining the completeness of the search.

When we started to work on the successor of FCS for the above reasons, we
initially looked into constraint programming in the hope to significantly reduce
the size of its code base. The promise of constraint programming was to just state
the necessary requirements with high-level constraints and to then use built-in
enumeration methods to search for solutions.

We implemented the successor using the portable constraint programming
model described in Section 5 and named it CP-Rota. Eventually (see Section 7),
CP-Rota even outperformed its predecessor on many instances, making con-
straint technology a potential remedy for all of the above original shortcomings.

5 A constraint formulation for rotating workforce
scheduling

Our initial development environment was SWI-Prolog, which we chose due to its
convenient libraries, tools and workflow, and also because it is freely available.
We then ported the model to GNU Prolog due to its much better performance,
and because it is also freely available. changes. When experimenting with cus-
tom allocation strategies (Section 6), GNU Prolog’s lack of garbage collection
hindered testing with larger instances, and we therefore ported the model also to
B-Prolog, which is also a very efficient Prolog implementation and available free
of charge for personal use. In all these systems, we model the rotating workforce
problem as follows:

– The schedule is represented as a list of lists, and each element is a finite
domain variable that denotes the shift type scheduled for this position.

– The temporal requirements are enforced via global cardinality/2 con-
straints on the columns of the schedule. In GNU Prolog, fd exactly/3 con-
straints are used instead.

– The minimal/maximal-length constraints on consecutive shifts of the same
type are enforced via automaton/3.

– Reified constraints are used to map shifts of all types to either “work” or
“day-off”, and a second automaton/3 constraint is used on these reified
variables to limit the number of consecutive work and day-off shifts.

– Reified constraints are also used to express forbidden patterns. For example,
if “0 4 3” is forbidden, the constraint is:

Xk #= 0 #/\ Xk+1 #= 4 #==> Xk+2 #\= 3

for all variables Xk, also taking into account the schedule’s cyclicity. In B-
Prolog, notin/2 (negated extensional) constraints are used for better per-
formance.

It only took a few days to implement this basic model (700 LOC, including
a 50 LOC parser for instance specification files and 50 LOC for visualisations)
and to get it to run on all of the above Prolog implementations. Only built-in
constraints are used in all systems. In contrast, the development of FCS took
several months.

6 Labeling and allocation strategies

The default strategy in CP-Rota is to first label the (reified) work/“day-off”
Boolean variables. Then, all original variables of the schedule are labeled with
the “first-fail” option. We call this strategy S1. When S1 did not yield a solution
within 1000 seconds, we used Strategy S2, which is to label all schedule variables
from left to right, trying their values from lowest to highest. If this does not
yield a solution within 1000 seconds, S3 is used: Reified constraints are used
to compute, for each column, the number of still missing shifts of each type.
Processing the columns in order, we then choose the shift type that misses the
least number of elements in that column, and assign it to a feasible variable with
smallest domain. When S3 also fails to find a solution within 1000 seconds, S4

is used: It is similar to S3, except the columns are not processed from left to
right, but in descending order of their number of still missing shifts of any type.

7 Comparison with the commercial system FCS

Table 1 compares the performance of CP-Rota with that of FCS on 20 real-
life instances from [10]. To the best of our knowledge, FCS is a state-of-the-art
commercial system for generating rotating workforce schedules. We tested all in-
stances on a Pentium 4, 1.8 GHZ, 512 MB RAM, using the latest versions of FCS,
GNU Prolog (1.3.1) and SWI-Prolog (5.9.10). Except where stated otherwise,
timing results are from GNU Prolog.

The table shows that CP-Rota nicely complements its predecessor so that
3 more instances than previously can now be solved. On 7 instances, CP-Rota
outperforms FCS already with its default strategy (S1), the converse holds for
6 instances.

8 Future work

Future improvements to CP-Rota include the addition of a more convenient user
interface, real-time interaction with decision makers and the implementation of
additional allocation strategies.

References

1. Nagraj Balakrishnan and Richard T. Wong. A network model for the rotating
workforce scheduling problem. Networks, 20:25–42, 1990.

2. B. Butler. Computerized manpower scheduling. Master’s thesis, University of Al-
berta, Canada, 1978.

3. Weil G. Chan, P. Cyclical staff scheduling using constraint logic programming.
In: Burke, E, Erben W. (Eds.): PATAT 2000, Lecture Notes in Computer Science,
2079:159–175, 2001.

4. Johannes Gärtner, Nysret Musliu, and Wolfgang Slany. Rota: A research project
on algorithms for workforce scheduling and shift design optimisation. Artificial In-
telligence Communications, 14(2):83–92, 2001.

Table 1. Comparison between FCS and CP-Rota

Ex. n FCS (time in sec) CP-Rota (sec) Strategy

1 9 0.9 0.02 S1

2 9 0.4 0.02 S1

3 17 1.9 0.24 S1

4 13 1.7 0.03 S1

5 11 3.5 0.98 S1

6 7 2 0.02 S1

7 29 16.1 0.07 S2

8 16 124 964 S1

9 47 >1000s 19 SWI, S4

10 27 9.5 >1000s –

11 30 367 >1000s –

12 20 >1000s >1000 –

13 24 >1000s 114 S1

14 13 0.54 940 S1

15 64 >1000s >1000s –

16 29 2.44 216 S1

17 33 >1000s 18 SWI, S3

18 53 2.57 >1000s –

19 120 >1000s >1000s –

20 163 >1000s >1000s –

5. N. Heller, J. McEwen, and W. Stenzel. Computerized scheduling of police man-
power. St. Louis Police Department, St. Louis, MO, 1973.

6. G. Laporte. The art and science of designing rotating schedules. Journal of the
Operational Research Society, 50:1011–1017, 1999.

7. G. Laporte and G. Pesant. A general multi-shift scheduling system. Journal of the
Operational Research Society, 55/11:1208–1217, 2004.

8. Michael Mörz and Nysret Musliu. Genetic algorithm for rotating workforce schedul-
ing. In Proceedings of second IEEE International Conference on Computational Cy-
bernetics (pages 121-126), Vienna, Austria, 2004.

9. Nysret Musliu, Johannes Gärtner, and Wolfgang Slany. Efficient generation of ro-
tating workforce schedules. Discrete Applied Mathematics, 118(1-2):85–98, 2002.

10. Nysret Musliu. Heuristic Methods for Automatic Rotating Workforce Scheduling.
International Journal of Computational Intelligence Research, Volume 2, Issue 4, pp.
309-326, 2006.

11. Gilles Pesant. A Regular Language Membership Constraint for Finite Sequences
of Variables. CP 2004, pp. 482-495, 2004.

