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Abstract

We present a new constraint solver over Boolean variables, freely available as

library(clpb)1 in SWI-Prolog. In this paper, we explain the core algorithms

and implementation trade-offs of our system. Our solver distinguishes itself from

other available CLP(B) solvers by several unique features: First, it is written

entirely in Prolog and is hence portable to other systems that provide a few

interface predicates that we outline. Second, our system provides new interface

predicates, and we show that they allow us to solve new types of problems with

CLP(B) constraints. Finally, we present performance results and comparisons

with the native CLP(B) solver of SICStus Prolog, and also with a new SICStus

port of our system. Despite being written entirely in Prolog, both versions of

our system can solve several benchmark instances that the native CLP(B) solver

of SICStus Prolog cannot solve.

Keywords: CLP(B), Boolean unification, Decision Diagrams, BDD

1. Introduction

CLP(B), Constraint Logic Programming over Boolean variables, is a declar-

ative formalism for reasoning about propositional formulas. It is an important

instance of the general CLP(X ) scheme introduced by Jaffar and Lassez [1]
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that extends logic programming with reasoning over specialized domains. Well-

known applications of CLP(B) arise in circuit verification and model checking

tasks.

There is a vast literature on SAT solving, and there are many systems and

techniques for detecting (un)satisfiability of Boolean clauses (see [2, 3, 4] and

many others). Prolog itself in fact turns out to be very suitable for implementing

small and clean SAT solvers [5].

However, a CLP(B) system is different from common SAT solvers in at least

one critical aspect: It must support and take into account aliasing and unifica-

tion of logical variables, even after SAT constraints have already been posted.

Generally, CLP(B) systems are more algebraically oriented than common SAT

solvers: In addition to unification of logical variables, they also support variable

quantification, conditional answers and easy symbolic manipulation of formulas.

In this paper, we discuss several use cases and consequences of these features.

This paper is organized as follows: In Section 2, we outline the current state

of available CLP(B) systems. Section 3 defines Binary Decision Diagrams and

describes the key algorithms we are using in our implementation. In Section 4,

we present the new interface predicates of our CLP(B) system. Further, we de-

scribe in detail how we have implemented the mentioned algorithms, and which

trade-offs we have made to obtain a portable CLP(B) system with acceptable

performance. Section 5 describes new applications made possible by the new

features of our library, followed by benchmark results in Section 6. In Section 7,

we describe a set of test cases.

This paper is a significantly extended and revised version of [6]. The addi-

tional material covered in the present version includes completely new material,

and also significantly extended explanations and material that previously had

to be omitted due to space constraints.

The first group of additions comprises the new Section 3.2 with high-level

descriptions of the BDD algorithms we are using, new benchmark results in

Section 6.4 that are obtained with the newly available SICStus port of our

CLP(B) system, and the new Section 7 on testing a CLP(B) system.
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The second group of extensions includes a much more thorough explanation

of our implementation and trade-offs in Section 4, a more compelling sample ap-

plication of the new interface predicate sat count/2 in Section 5.1, and several

smaller extensions such as additional benchmark instances in Section 6.

Familiarity with Prolog is assumed to completely understand the Prolog-

specific terminology and notation of this paper. As a thorough introduction,

we recommend [7]. In addition, we provide accompanying information about

modern Prolog with a strong focus on constraints and more recent developments

in a collection of free essays at https://www.metalevel.at/prolog.

2. Current CLP(B) systems and implementation methods

Support of CLP(B) constraints has been somewhat inconsistent between and

even within different Prolog systems over the last few decades. CHIP [8] was

one of the first widely used systems to support CLP(B) constraints, and shortly

after, SICStus Prolog supported them too [9], up until version 3. However, more

recent versions of SICStus Prolog, while shipping with a port of the clpb library,

do not officially support the solver in any way.2 In contrast, Prolog IV [10] and

GNU Prolog [11] do support Boolean constraints.

Implementation methods of CLP(B) systems are likewise diverse. We find at

least three different approaches in the literature: (1) implementations based on

Binary Decision Diagrams (BDDs) as in [9], (2) implementation of CLP(B) con-

straints by other constraints, using for example indexicals [12], and (3) using an

external SAT solver [13].

Each of these variants has strengths and weaknesses: Among the major

advantages of BDD-based implementations we find some algebraic virtues and

suitability for specific applications which we explain in the following. In com-

parison, indexical-based implementations are generally simpler, more scalable

2The documentation of SICStus Prolog 4.3.2 contains the exact wording of current support

terms of the clpb module that ships with the system: “The library module is a direct port

from SICStus Prolog 3. It is not supported by SICS in any way.”

3

https://www.metalevel.at/prolog


and much more efficient on selected benchmarks [12]. However, they require an

explicit search to ensure the existence of solutions after posting constraints. Us-

ing external solvers may render us unable to generate all satisfying assignments.

Approaches with such properties are called incomplete. See also Appendix B.

3. Binary Decision Diagrams (BDDs)

3.1. Definition and related work

A Binary Decision Diagram (BDD) is a rooted, directed and acyclic graph

and represents a Boolean function [14, 15]. In this paper, we assume all BDDs

to be ordered and reduced. This means, respectively, that all variables appear in

the same order on all paths from the root, and that the representation is minimal

in the sense that all isomorphic subgraphs are merged and no redundant nodes

occur.

Leaves of a BDD are the truth values true and false. Each internal node

in a BDD is associated with a branching variable V and exactly two children:

low corresponding to V = 0, and high corresponding to V = 1. Therefore, each

internal node can be read as an if-then-else, using (V→ high ; low) in analogy

to well-known Prolog syntax.

In the Prolog community, BDDs have already appeared several times: Apart

from the CLP(B) library used in SICStus Prolog, we also find BDDs in the

form of small Prolog code snippets. For example, Richard O’Keefe has gener-

ously made a small library available for his COSC410 course in the year 2011.3

BDDs also occur in publications that introduce or use closely related data struc-

tures [16, 17]. Within the logic programming community, important applica-

tions of BDDs arise in the context of probabilistic logic programming [18] and

termination analysis of Prolog programs [19, 20].

In our CLP(B) system which we present in Section 4, it is possible to inspect

arising BDDs on the Prolog top-level. See Appendix A for an example.

3Source: http://www.cs.otago.ac.nz/staffpriv/ok/COSC410/robdd.pl
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3.2. Algorithms on BDDs

As mentioned in Section 3.1, a BDD represents a Boolean function. In this

section, we present a brief overview of the algorithms that typically arise in the

context of BDDs and which are also used in our CLP(B) implementation. The

algorithms we are using are a combination of those that are presented in [15] in

a sequence of increasingly sophisticated algorithms for reasoning about BDDs.

We describe below how we have combined parts of these algorithms in such a

way that they become suitable for use in our CLP(B) system.

One key observation is that BDDs can be constructed incrementally, by

reasoning about subformulas of the Boolean functions we want to represent

as BDDs. The two simplest cases are:

• The truth values true and false are represented by themselves, as leaves

of any BDD.

• A single Boolean variable X corresponds to the BDD (X→ true ; false).

See 3.1 for the explanation of this syntax: Iff X is true, then the whole

formula (consisting only of X) is true.

We now describe how to construct the BDD of a compound formula. First,

we describe an important operation called melding of BDDs. Consider two

BDDs f and g of the respective forms (x→ f1 ; f0) and (y→ g1 ; g0), where

x and y are branching variables, and fi and gi are again BDDs. In accordance

to the definition in Section 3.1, we assume that we have imposed an order on

the branching variables that arise in these BDDs. We define the meld f ⋄ g

as follows:

f ⋄ g =



















(x→ f1 ⋄ g1 ; f0 ⋄ g0), if x = y;

(x→ f1 ⋄ g ; f0 ⋄ g), if x < y;

(y→ f ⋄ g1 ; f ⋄ g0), if x > y.

For any BDD f , we denote with B(f) the total number of nodes in f , in-

cluding the leaves. It is easy to see that B(f ⋄g) ≤ B(f)B(g) because each node

of f ⋄ g corresponds to one node of f and one node of g.
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Further, melding lets us derive an algorithm for constructing the BDD of a

compound formula: We can plug in one of the Boolean connectives ∧, ∨ and ⊕ in

place of ⋄, and augment the definition with the following additional provisions:

1. If at least one of f and g is a concrete Boolean value (true or false), then

computing the BDD corresponding to f ⋄ g is straightforward.

2. If, during melding, a new BDD is constructed that is identical to one that

has already been constructed in earlier steps, then the existing one must

be used. This provision ensures that all isomorphic subgraphs are merged,

which is a prerequisite for keeping the BDD reduced.

3. If, during melding, a BDD of the form (x→ f ; f) arises, then f is used

instead. This ensures that no redundant nodes occur, and in combination

with (2) ensures that the BDD is reduced.

Since melding itself produces only ordered BDDs, the result of these provi-

sions is that all arising BDDs are ordered and reduced.

This yields an algorithm with run time cost proportional to at least B(f)B(g)

for these binary connectives. The key to make this construction more efficient

is to memoize intermediate results that have already been computed. We illus-

trate this algorithm for combining two BDDs by using Boolean conjunction as

one concrete example. The other Boolean connectives are handled completely

analogously. We describe how we have implemented this in Section 4.6:

f ∧ g =



















If f ∧ g = r is in the memo cache, return r.

Otherwise, compute r ← f ∧ g as explained above.

Store f ∧ g = r in the memo cache, and return r.

We thus summarize the worst-case run time costs of constructing a conjunc-

tion f ∧g of two BDDs by this method as follows: First, the resulting BDD may

have up to B(f)B(g) nodes. To make nodes accessible at all, we must represent

them somehow in memory. Nodes and their immediate children are naturally

represented as Prolog terms (see Section 4.6) and can be accessed in O(1) time
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by simply referencing these terms. However, this still leaves two questions:

First, how to detect whether a node is being constructed that is identical to one

that was already created? In our implementation, we accomplish this by storing

all nodes in an AVL tree, which we explain in Section 4.6.3. Second, we need

a memo cache to store intermediate results. In [15], a hash table is suggested

for this purpose, but the following option is also mentioned although it again

entails some overhead: We can use a balanced tree to store intermediate results.

This is the method we have chosen, since it is a natural and portable fit for

a Prolog-based implementation. We are storing intermediate results also in an

AVL tree. Hence, in the worst case, looking up a single intermediate result has

running time that is proportional to log
(

B(f)B(g)
)

.

Let us denote with N the total number of nodes that our system stores

in memory at the current moment, plus the number B(f)B(g) which is the

maximal number of new nodes that can arise when computing f ◦ g for any

binary connective ◦.

For each new node that is created, we must look up whether it already

exists in the AVL tree of existing nodes, which is accomplished in O(log N),

i.e., logarithmic in the total number of nodes that exist so far. Further, we

look up each intermediate result in the memo cache, which is accomplished in

O
(

log(B(f)B(g))
)

in the worst case.

Thus, the total worst case running time of constructing the BDD of f ◦ g is:

O
(

(log N + log(B(f)B(g))) × B(f)B(g)
)

, and hence O
(

B(f)B(g) log N
)

. The

asymptotically optimal worst-case performance is O
(

B(f)B(g)
)

. Thus, the in-

herent overhead of our implementation is proportional to log N . We have chosen

to accept this overhead, because the limiting factor when reasoning over BDDs

is usually memory, and for typical N (say, up to a few million nodes), log N

is acceptably small for our purposes. Moreover, we apply a technique that is

suggested in [15] to further reduce this overhead in general: In our implemen-

tation, we maintain one AVL tree per branching variable, and each such tree

only contains those nodes where the corresponding variable occurs at the root.

Section 4.6 contains more information about the representation we are using
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and its consequences. In cases where many intermediate results can be reused,

the running time is significantly less than the worst case, due to the use of the

memo cache. As noted in [15], only B(f) + B(g) new nodes arise in many cases

of practical relevance when combining two BDDs. In such cases, the running

time of our implementation is O
(

(B(f) + B(g)) log N
)

.

Once a BDD f is constructed, many important operations on it can be

performed in time O
(

B(f)
)

or even O(1). In the context of our system, we

benefit from the following features after a BDD is constructed: First, we can

determine in O(1) whether f is satisfiable. This follows from the important

fact that reduced and ordered BDDs are canonical and hence such a BDD is

satisfiable iff it is different from the single leaf false. Second, if f is satisfiable,

we can compute a concrete satisfying assignment in time and space that is linear

in the number of variables of f , by traversing the BDD and searching for a path

that leads to true which is known to exist in that case.

The following two algorithms share an important design principle: They

work by first recursively counting the number of solutions in each of the children

of any node, storing intermediate results as attributes of those nodes that were

already visited. Considering that for each node, a k-bit number must be stored

and computed, this step takes time and space proportional to O
(

kB(f)
)

and is

straightforward to implement by inductively computing the number of solutions

in the form of powers of 2, one for each level of branching variables. Once this

is available, we can efficiently compute (1) the total number of solutions (2) a

random solution in the sense that each satisfying assignment is equally likely.

We have followed the descriptions contained in [15] for both cases.

The computation of a weighted solution which attains minimum (or maxi-

mum) weight among all satisfying assignments when each Boolean variable is

assigned an integral weight is similarly straightforward [15] to accomplish in

O
(

n + B(f)
)

time and space, where n is the number of variables.

Critically though, the BDD algorithms themselves are not sufficient to imple-

ment a CLP(B) system: In a logic programming language like Prolog, variables

may become aliased. The existing literature on BDDs does not explain how to
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handle this case. We explain this aspect in tandem with the Prolog implemen-

tation of these algorithms in Section 4.6, and show examples of their application

in Section 5.

4. A new CLP(B) system: library(clpb) in SWI-Prolog

We have implemented a new free CLP(B) system, available in SWI-Prolog [21]

as library(clpb). In this section, we present the design choices, interface predi-

cates and implementation. Subsections 4.6 and 4.7 are targeted at implementors

and contributors of Prolog systems and constraint libraries, and assume famil-

iarity with the algorithms and preliminaries presented in Sections 3.2 and 4.5.

4.1. Syntax of Boolean expressions

We have strived for compatibility with SICStus Prolog and provide the same

syntax of Boolean expressions. Table 1 shows the syntax of all Boolean expres-

sions that are available in both SICStus and SWI-Prolog. Universally quantified

variables are denoted by Prolog atoms in both systems, and universal quantifiers

appear implicitly in front of the entire expression. Atoms are useful for denoting

input variables: In answers to queries, intended output variables are expressed

as functions of input variables. The expression card(Is,Exprs) is true iff the

number of true expressions in the list Exprs is a member of the list Is of in-

tegers and integer ranges of the form From-To. Note that this syntax in fact

permits us to express4 Pseudo-Boolean constraints, which generalize cardinality

constraints by allowing integer coefficients in Boolean formulas. For example,

the Pseudo-Boolean constraint 2a + b + c̄ ≥ 2 can be expressed in CLP(B) as

sat(card([2-4],[A,A,B,˜C])). Cardinality constraints are readily translated

to BDDs that represent counter networks [9].

In addition to the Boolean expressions shown in Table 1, we have also chosen

to support two new Boolean expressions. These new expressions are shown

in Table 2. They denote, respectively, the disjunction and conjunction of all

4See [22] for the reduction scheme and some related results.
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Boolean expressions in a list. We have found this syntax extension to be very

useful in many practical applications, and encourage their support in other

CLP(B) systems. This syntax was kindly suggested to us by Gernot Salzer.

expression meaning

0, 1 false, true

variable unknown truth value

atom universally quantified variable

˜Expr logical not

Expr + Expr logical or

Expr * Expr logical and

Expr # Expr exclusive or

Var ˆ Expr existential quantification

Expr =:= Expr equality

Expr =\= Expr disequality (same as #)

Expr =< Expr less or equal (implication)

Expr >= Expr greater or equal

Expr < Expr less than

Expr > Expr greater than

card(Is,Exprs) see description in text

Table 1: Syntax of Boolean expressions available in both SICStus and SWI

expression meaning

+(Exprs) disjunction of list Exprs of expressions

*(Exprs) conjunction of list Exprs of expressions

Table 2: New and useful Boolean expressions in SWI-Prolog

4.2. Interface predicates of library(clpb)

Regarding interface predicates of our system, we have again strived primarily

for compatibility with SICStus Prolog, and all CLP(B) predicates provided by
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SICStus Prolog are also available in SWI-Prolog with the same semantics. In

particular, the interface predicates available in both systems are:

sat(+Expr): True iff the Boolean expression Expr is satisfiable.

taut(+Expr, -T): Succeeds with T=0 if Expr cannot be satisfied, and with T=1

if T is a tautology with respect to the stated constraints.

labeling(+Vs) Assigns a Boolean value to each variable in the list Vs in such

a way that all stated constraints are satisfied.

4.3. Implementation choices: BDDs, SAT solvers, external libraries

Before presenting the features and implementation of our new system, we

present a brief high-level overview of the various implementation options and

their consequences, and give several reasons that justify the choices we have

made in our implementation.

When implementing a new CLP(B) system, we typically have a clear idea

of what we need from it. Also in our case, the intended use was very clear

from the start: Since 2004, the author has been working on facilitating a port

of Ulrich Neumerkel’s GUPU system [23, 24] to SWI-Prolog so that more users

can freely benefit from it. GUPU is an excellent Prolog teaching environment,

and one of its integrated termination analyzers, cTI [19], heavily depends on

the CLP(B) implementation of SICStus Prolog. Already a cursory glance at

the source code of cTI makes clear that it depends on features that only a

BDD-based solver can provide, since cTI goes as far as inspecting the concrete

structure of BDDs in its implementation.

Still, we initially hoped for a shortcut: Our hope was that we could simulate

the behaviour of a BDD-based CLP(B) system by using a simpler (external or

internal) SAT solver. For example, we envisioned that checking for tautologies

could be easily handled by looking for counterexamples of the accumulated con-

straints, and checking consistency of accumulated constraints could be handled

by trying to generate concrete solutions after posting each constraint.

Alas, such a simplistic approach falls short for several reasons. One of those

reasons is efficiency: For example, detecting tautologies (a prominent operation

11



Y

X

Z

(a)

 :− use_module(library(clpb)).
 

 nand_gate(X, Y, Z) :− sat(Z =:= ~(X*Y)).
 

 xor(X, Y, Z) :−
         nand_gate(X, Y, T1),
         nand_gate(X, T1, T2),
         nand_gate(Y, T1, T3),
         nand_gate(T2, T3, Z).

(b)

Figure 1: (a) Expressing xor (X ⊕Y = Z) with four nand gates and (b) describing the circuit

with CLP(B) constraints. ?- xor(x, y, Z). yields sat(Z=:=x#y).

in cTI) is hard in general, but straightforward if the arising BDDs are small.

Another, more fundamental reason is that many use cases of CLP(B) depend on

symbolic results instead of “only” detecting satisfiability, and such results are

much more readily obtained with BDD-based approaches.

As a simple example, consider the integrated circuit shown in Fig. 1 (a).

A Prolog program that describes the circuit with CLP(B) constraints (see Sec-

tion 4.1) is shown in Fig. 1 (b). No concrete solutions are asked for by that pro-

gram: To verify the circuit, we care more about the symbolic expressions that are

obtained as answers, and less about concrete solutions. For example, with the

given program, the query ?- xor(x, y, Z). yields the answer sat(Z=:=x#y),

expressing Z as a function of the intended input variables, which are universally

quantified. From this, we see at one glance that the circuit indeed describes the

intended Boolean xor operation. When producing answers, existential quantifi-

cation is implicitly used by the Prolog top-level to project away variables that

do not occur in the query.

To efficiently provide such features and others (see also Section 4.4), we

decided to base our implementation on BDDs.

Having made the decision to implement a BDD-based CLP(B) system, the

next arising question was how to actually use BDDs so that they work in the

context of CLP(B). Even though the excellent implementation description of an

existing BDD-based CLP(B) system [9] was of course available to us, many un-

settled questions still remained, such as: How is an existing BDD changed after

unification of two variables? How do we handle unification of two variables that
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reside in different BDDs? How does the notion of universally quantified vari-

ables affect all operations on BDDs? Which kind of consistency is guaranteed?

Finally, are there not some subtly misguiding mistakes in the implementation

description, e.g., is a BDD really represented by a ground Prolog term in SICS-

tus Prolog, or are there not variables also involved?

In the face of so many initially unsettled questions, we anticipated a lot

of prototyping and rewriting in the initial phase of our implementation, which

also turned out to be necessary. To facilitate prototyping, enhance portability,

and to study and answer high-level semantic questions separated from lower-

level issues, we are consciously not hard-wiring our solver with an external

BDD package until semantic aspects (see Section 4.5) are settled to provide

a more stable basis for low-level changes. Therefore, we have created a new

high-level Prolog implementation of BDDs that forms the basis of our new

CLP(B) system.

We consider the availability of a completely free CLP(B) system where the

above questions are answered in the form of an executable specification an in-

tegral part of our contribution, since it also shows the places where, if at all,

external BDD libraries can be most meaningfully plugged in.

4.4. New interface predicates

As already mentioned, BDDs have many important virtues that can be easily

made available in a BDD-based CLP(B) system. As explained in Section 3.2

and [15], the key idea of several efficient algorithms on BDDs is to combine the

solutions for the two children of every BDD node in order to obtain a solution

for the parent node.

In addition to the interface predicates presented in Section 4.2, we have

implemented three new predicates that are not yet available in SICStus Prolog,

and which are high-level interfaces to the algorithms described in Section 3.2:

sat count(+Expr, -N): N is the number of different assignments of truth

values to the variables in the Boolean expression Expr, such that Expr is

true and all posted constraints are satisfiable.
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random labeling(+Seed, +Vs): Assigns a Boolean value to each variable in

the list Vs in such a way that all stated constraints are satisfied, and each

solution is equally likely, using random seed Seed and committing to the

first solution.

weighted maximum(+Weights, +Vs, -Maximum): Assigns 0 and 1 to the vari-

ables in Vs such that all stated constraints are satisfied, and Maximum is

the maximum of
∑

wivi over all admissible assignments. On backtrack-

ing, all admissible assignments that attain the optimum are generated.

As we show in Section 5, these predicates are of great value in many applica-

tions, and we encourage their support in other CLP(B) systems based on BDDs.

We describe design principles for new interface predicates in Appendix C.

4.5. Attributed variables

Before explaining the actual implementation of our new system, a short

discussion of attributed variables is highly appropriate. This is because Pro-

log application programmers typically encounter attributed variables only in-

directly, whereas they play a major role in the internal implementation of our

CLP(B) system.

Attributed variables are a ternary relation between (i) a variable, (ii) the

name of the attribute, and (iii) the value of the attribute. Importantly, at-

tributes can be fetched and changed in such a way that all modifications are

undone on backtracking. Moreover, when an attributed variable is involved in

a unification, then a special user-provided predicate is invoked that can anal-

yse existing attributes and either allow or veto the unification based on the

available information. Attributed variables are an important mechanism for

implementing constraint solvers.

In SWI-Prolog, the interface of attributed variables follows that of hPro-

log [25], and we now briefly explain the built-in interface predicates for at-

tributed variables in SWI-Prolog. These predicates can be classified into three

groups: (1) accessing and changing attributes, (2) reasoning about unifications

of attributed variables and (3) displaying attributed variables in answers to
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queries. In SWI-Prolog, the name of an attribute is always a Prolog atom and

at the same time corresponds to a Prolog module.

The most important predicates of the first category are get attr/3 and

put attr/3. We do not explain these predicates in detail here: For the follow-

ing, it suffices to understand that attributes can be used to attach information

to variables, and that this information can be taken into account when such

variables are being unified. We refer readers to the SWI-Prolog documentation

for more information about these two predicates.

In the second category, there is an important interface predicate called

attr unify hook/2:

attr unify hook(+AttValue, +VarValue): A predicate that must be de-

fined in the module to which an attributed variable refers. It is called af-

ter the attributed variable has been unified with a non-free term, possibly

another attributed variable. AttValue is the value of the attribute that

was associated to the variable in this module. VarValue is the new value

of the variable. If this predicate fails, the unification fails. If VarValue is

another attributed variable, the hook often combines the two attributes

and associates the combined attribute with VarValue using put attr/3.

In the third category, we find the predicate project attributes/2 and the non-

terminal5 attribute goals//1. The predicate project attributes/2 is used

to project all remaining constraints onto variables that appear in the original

query, and the nonterminal attribute goals//1 – if it is defined in a module –

relates the attributes of that module to a list of Prolog goals that express the

pending constraints. The Prolog system automatically calls these predicates

when necessary. We refer interested readers to the SWI-Prolog manual for the

exact definition. Other Prolog systems such as SICStus Prolog provide similar

interfaces for attributed variables that are more convenient and less error-prone.

5This concept is used in Prolog Definite Clause Grammars (DCGs), which we explain at:

https://www.metalevel.at/prolog/dcg. We also provide a more comprehensive introduction

to attributed variables at: https://www.metalevel.at/prolog/attributedvariables.

15

https://www.metalevel.at/prolog/dcg
https://www.metalevel.at/prolog/attributedvariables


4.6. Implementation

We now explain the actual implementation of our system. Perhaps most

strikingly, our system is written entirely in Prolog. This is a deliberate de-

sign decision, facilitating rapid prototyping and portability. To the best of our

knowledge, ours is the first BDD-based CLP(B) system that is freely available.

Our library comprises about 1 800 LOC, including documentation and com-

ments. Some knowledge of Prolog is required to understand this section. If

more information is required about any predicate P that is mentioned in this

section, we recommend to run the following query in SWI-Prolog: ?- help(P).

For example: ?- help(sat).

The following sections explain the implementation of our system in consid-

erable detail. For example, we outline how we represent BDDs (Section 4.6.2),

how we use AVL trees (Section 4.6.3), how we construct new BDD nodes (Sec-

tion 4.6.4), and how we have implemented various other aspects of our system.

We summarize and discuss implementation options and trade-offs in Section 4.9.

4.6.1. Prerequisites

On a very high level, the implementation can be reduced to expressing the

algorithms explained in Section 3.2 in Prolog. This is because every Prolog goal

involving the interface predicates explained in Sections 4.2 and 4.4 performs

one of these algorithms. However, to obtain a full CLP(B) system, there are

additional assumptions and subtleties involved, which we now explain.

In particular, we rely on the following assumptions regarding the underlying

Prolog system:

1. There is a way to obtain a sequence of strictly increasing integers that can

be accessed from any part of our code. These integers serve to assign an

order to all occurring CLP(B) variables, and also provide unique identifiers

of BDD nodes.

2. There is a way to attach information to logical variables. This is necessary

to keep track of all constraints these variables are involved in.
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3. There is a way to take existing constraints into account when two logical

variables are unified.

SWI-Prolog, SICStus Prolog, and also several other Prolog systems all satisfy

these requirements. In particular:

• Requirement (1) is satisfied in all Prolog systems: For example, the so-

called global database can be used to store and change global information

via the standard predicates assertz/1 and retract/1.

• Requirements (2) and (3) are satisfied by the interface predicates to at-

tributed variables mentioned in Section 4.5.

4.6.2. Representing BDDs in Prolog

We now discuss how we represent and reason about BDDs in our sys-

tem. First, let us consider the representation of a BDD that is already con-

structed. In our system, we represent every BDD as a Prolog term. We dis-

tinguish two basic cases: (1) the leaves false and true are respectively rep-

resented by the integers 0 and 1, and (2) internal nodes are represented as

node(ID,Var,Low,High,Aux), where:

• ID is the node’s unique integer ID

• Var is the node’s branching variable

• Low and High are the node’s low (Var = 0) and high (Var = 1) children

• Aux is a free variable, one for each node, that can be used to attach

attributes and store intermediate results.

This representation means that we are using (assuming SWI-Prolog and

machine-sized integers) at least 48 bytes per node on 64-bit systems. Using the

notation of Section 3.1, this is the node (Var→ High ; Low), identified by the

unique integer ID, and additional information that can be stored in Aux.

Note that more must hold: We must ensure that BDDs are reduced (see

Section 3.1) and in particular that all isomorphic subgraphs are shared. Before
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we explain how we have implemented this, we consider the representation of

branching variables: In our system, each branching variable is a Prolog variable,

and we can therefore attach attributes to it (Section 4.5). The attributes of each

branching variable V are:

• the index of V. The index is a unique integer for each branching variable.

• the BDD to which V belongs. We explain this point below.

• an AVL tree that stores all nodes where V is a branching variable. See

Section 3.2.

4.6.3. AVL trees in Prolog

To reason about AVL trees in Prolog, we use library(assoc): This library

ships with SWI-Prolog and provides AVL trees based on a public domain library

that was originally written by Richard O’Keefe. An AVL tree as implemented

by this library is a data structure that provides an association between unique

ground Prolog terms called the keys, and corresponding values which are arbi-

trary Prolog terms. For this reason, AVL trees and other balanced trees are

also called association lists in Prolog. Since library(assoc) uses AVL trees as

its underlying data structure, inserting, changing and fetching an association all

take O(log N) time in the worst case (and average case), where N is the number

of associations stored in the tree.

There are only 3 operations on AVL trees that are needed to implement our

CLP(B) system:

• list to assoc(Pairs, Assoc): Pairs is a given list of Key-Value pairs,

and Assoc is the resulting AVL tree. For example, the empty associa-

tion list E can be obtained with list to assoc([], E).

• get assoc(Key, Assoc, Value): Given association list Assoc and key Key,

fetch the associated value Value if it exists. Otherwise, fail.

• put assoc(Key, Assoc0, Value, Assoc): Given an existing AVL tree

Assoc0, as well as key Key and value Value, compute a new AVL tree
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Assoc where Key is associated with Value. This can be used to add as

well as to change an association.

The mentioned AVL trees which are stored as attributes of branching vari-

ables are critical to keep all BDDs reduced. They are used as follows: Suppose

we are given two existing nodes Low and High, and want to create a new node M

to represent the BDD (V→ High ; Low). Further, we denote with id(N) the

unique integer ID of the node N (if it is an inner node) or the atoms true or

false (if it is a leaf node). Then the Prolog term node(id(Low), id(High)) is a

unique identifier of the new node M with respect to the decision variable V.

Importantly, terms of the form node(I,J), where I and J are integers or

atoms, are ground Prolog terms (they contain no variables) and can hence be

used as keys of an AVL tree.

4.6.4. Constructing BDD nodes in Prolog

We are now ready to describe how a new node (V→ High ; Low) is con-

structed if its children Low and High are already computed. In our system, this

construction is implemented as a Prolog predicate. However, we consciously

present it here in functional terminology to emphasize the directional aspect of

this computation: The branching variable V and the two children Low and High

must be given, and the synthesized node N := make node(V, Low, High) is

computed. In pseudo-code:

make node(V, Low, High) =















































































If Low == High, return Low.

Otherwise, set Key := node(id(Low), id(High)).

If Key exists in the AVL tree of V, return

the associated node.

Otherwise, obtain a new unique integer ID.

Set Node := node(ID, V, Low, High, Aux).

Register Key-Node in the AVL tree of V.

Return Node.

In the above description, Aux is a new fresh variable that can be used to

attach attributes to the new node when needed. For example, this is used by
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sat count/2 to recursively compute the number of possible assignments by the

method explained in Section 3.2. In such computations, Aux is used to store

results that are already computed for a node.

In our system, these steps are executed every time a new node is constructed.

This guarantees that all arising BDDs are reduced. The reason for this is that

internally, the underlying Prolog system uses references to existing terms when

yielding results from association lists. This happens completely automatically,

due to the way association lists are implemented in library(assoc). Therefore,

when a node already exists, it is reused in the construction.

Since each existing node is also represented in the association list of its

branching variable, the space that is necessary to represent any BDD – and

which we have considered above – is roughly doubled. Therefore, compared to

hashing as it is used in [15], using association lists incurs linear space overhead

and logarithmic time overhead. On the plus side, association lists scale very

predictably and do not require any ad hoc considerations and complex treatment

of edge-cases. In addition, they are well suited for a Prolog implementation.

4.6.5. Interaction with logical variables

We now discuss how Prolog variables interact with these algorithms. In

a CLP(B) system, we want to treat Prolog variables as actual logical vari-

ables, which means that two variables may become aliased by unification. Be-

fore we explain how to make this possible, we first describe how we represent

CLP(B) variables in general.

In our system, each CLP(B) variable belongs to exactly one BDD and gets an

attribute of the form index root(Index,Root), where Index is the variable’s

unique integer index, and Root is the root (see below) of the BDD that the

variable belongs to. When a new logical variable is encountered by one of the

CLP(B) interface predicates, the variable gets assigned a unique integer ID.

This is used to make BDDs ordered. The mechanism for creating unique IDs

for variables is analogous to how IDs are assigned to new nodes, and is ensured

by requirement (1).
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With these provisions in place, constructing the BDD of any binary connec-

tive is simply a matter of performing the steps outlined in Section 3.2 while

using the algorithm of Section 4.6.4 to create nodes. When a new BDD is being

constructed, intermediate results are stored in a (fresh) association list for mem-

oization. The keys in this association list are ground Prolog terms of the form

◦(id(F), id(G)), where the functor ◦ denotes one of the binary connectives ∧, ∨

or ⊕, and F and G are BDD nodes. The associated value, if it exists, denotes the

resulting node of this operation, and can be used instead of re-computing the

(necessarily identical) node. This association list is discarded after the BDD is

fully constructed, i.e., upon completion of the solver interface predicates such

as sat/1.

A root is a logical variable with a single attribute, a pair of the form Sat-BDD,

where Sat is the Boolean expression (in original form) that corresponds to BDD.

We say that two BDDs are disjoint if they have no branching variable

(and hence no inner node) in common. In precisely two situations, two or

more disjoint BDDs need to be combined into a single new BDD. These sit-

uations are: (a) the occurrence of a new constraint which contains variables

from disjoint BDDs and (b) aliasing of two logical variables that belong to

disjoint BDDs.

We consider (a) first also because it is, in a sense, the more general case:

Declaratively, we can interpret the unification of two variables X and Y as the

constraint sat(X=:=Y). However, this does not completely explain what happens

operationally upon unification, and we therefore discuss unification separately

below. We illustrate (a) with a simple example: From the above description,

it follows that the conjunction of constraints (sat(A+B),sat(C+D)) yields pre-

cisely two (disjoint) BDDs, one for each of the two constraints. Suppose that

further, the constraint sat(B+C) is posted. This expression contains variables

from disjoint BDDs. Hence, it is necessary to build a new BDD that cor-

responds to the totality of all involved constraints. We observe that posting

several successive constraints that give rise to BDDs corresponds to a conjunc-

tion of SAT formulas. In this case, such a newly formed BDD must therefore
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correspond to the conjunction (A+B)*(C+D)*(B+C). We thus build the BDD of

that conjunction (recall that each original formula is accessible via the root of

each involved BDD), and then assign the result to each of the involved vari-

ables. This retains the invariant that each CLP(B) variable belongs to exactly

one BDD. This is readily generalized to (n+1)-fold conjunctions in cases where

variables from n (n ≥ 2) disjoint BDDs are involved. The combined symbolic

conjunction is assigned to the root of the new BDD, since this conjunction is

the corresponding formula.

We now turn to (b), i.e., variable aliasing. When two logical variables that

both participate in CLP(B) constraints are unified, then the unification hook

(see Section 4.5) is automatically invoked by the Prolog system. When two vari-

ables X and Y are unified, we first assign them the same index (for example, that

of X), so that they become truly indistinguishable. Note that this may destroy

the ordering of any BDDs, and we must take steps to restore the ordering. For

this, we distinguish two cases: First, suppose X and Y are already part of the

same BDD. In that case, we need to rebuild that BDD. We do this by fetching

the formula Sat that is associated with the root of X (and hence also of Y),

and build the BDD of Sat from scratch, via the synthesis algorithm outlined

in Section 3.2. This works because the variables are automatically aliased also

in Sat due to the way Prolog handles unifications.

Second, suppose that X and Y occur in different BDDs. These BDDs must

be merged to form a single BDD in which the newly aliased variables both

participate. This is carried out in exactly the same way as explained above.

Using these techniques, we combine and rebuild BDDs when necessary, to

ensure that each CLP(B) variable belongs to exactly one BDD, and that all

arising BDDs are ordered and reduced. Every time two or more BDDs are

combined due to one of the reasons outlined above, we purge and recreate from

scratch the AVL trees that are associated with each branching variable of the

new BDD. This is a substitute for garbage collection as suggested in [15]: By

recreating these AVL trees, we automatically free memory that would otherwise

be used to keep track of nodes that no longer occur in any BDD. The cost of
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each such cycle is O(N log N), where N is the number of existing nodes. Note

that we rely on the underlying Prolog system’s garbage collector to reclaim this

memory.

When a variable V is unified with a concrete Boolan value, i.e., 0 or 1, the

Prolog system likewise calls the unification hook. In that case, we compute the

so-called restriction of the BDD f to which the variable belongs: This means

the BDD where each occurrence of the node (V→ fi ; fj) is replaced by either fi

or fj , depending on the truth value of V. When computing the restriction of

a BDD, we use a fresh AVL tree to store nodes whose restriction has already

been computed. The keys of this AVL tree are the unique node IDs, and the

associated values are the corresponding results of computing the restriction.

This means that such an assignment is performed in O(B(f) log(B(f))), again

incurring a logarithmic factor over asymptotically optimal performance.

4.7. Consistency notions in the context of CLP(B)

For fixed variable order and Boolean function, the corresponding BDD is

canonical. Hence, as long as all BDDs that represent the posted constraints are

different from the single leaf false, there is at least one admissible solution. In

our system, after a BDD is constructed, we always check whether it is identical to

false (which, as explained in Section 4.6, is represented by 0), and automatically

fail if that is the case. Therefore, in our system, when a constraint succeeds,

there is at least one solution. Appendix B defines these notions in depth.

In addition, the well-known and general notion of (global) consistency as

defined in [26] is of course equally applicable to CLP(B): A Boolean constraint

satisfaction problem is consistent iff all variables that admit only a single truth

value are assigned that value. In other words, there must not be remaining

domain elements that do not participate in any solution. For example, when

posting the constraint sat(X*Y + ˜X*Y), then a consistent CLP(B) solver must

yield the unification Y = 1. We implement this notion of consistency in our

CLP(B) system, and, although this is not documented and does not directly

follow from its implementation description, library(clpb) in SICStus Prolog
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seems to implement this as well.

In fact, SICStus Prolog goes even beyond global consistency, and seems to

implement an undocumented additional property that, for lack of an established

terminology (see also [27]), we shall call aliasing consistency. By this, we mean

that if taut(X =:= Y, 1) holds for any two variables X and Y, then X = Y

is posted. For example, when posting sat((A#B)*(A#C)), then an aliasing

consistent CLP(B) solver must yield the unification B = C.

We implement both consistency notions as follows: First, in a single global

sweep of the BDD, we collect all variables that are not skipped in at least one

branch of the BDD that leads to true. It is easy to see that if a variable

is skipped in a branch that leads to true, then it can assume both possible

truth values, and cannot be involved in any aliasing. In the following, only the

collected variables are considered. Among these variables, we can easily detect

those that admit only a single satisfying assignment: These are all branching

variables V for which all nodes in which they occur are of the same shape,

and either all of them are (V→ false ; any) or all of them are (V→ any ;

false). Such a variable is necessarily identical to 0 (in the first case) or 1 (in the

second case). In our system, these assignments are automatically materialized

by means of unification.

The remaining variables are further classified into: (1) variables that do not

have true as any child in any node, and (2) variables that have false as one

child in all nodes. It is easy to see that any potential aliasing between different

variables must involve one variable from category (1), and one variable from

category (2). Therefore, in a single sweep of the BDD, we have reduced the

task of finding potential aliasings from O(n2) (in the number n of variables)

to considering pairs of variables of only the described types, which we then

iteratively test.

We have tested the impact of enabling global and aliasing consistency on a

range of benchmarks, and generally found the impact to be very acceptable and

sometimes even improving the running time. For this reason, we have opted to

enable both consistency notions and benefit from their algebraic properties. See
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also Section 6.3.

The combination of these two consistency notions ensures the following inter-

esting property: All entailed unifications between CLP(B) variables and truth

values appear explicitly in answers to queries. An interesting application6 of

this property is the derivation of all entailed constraints also in other domains,

such as described in [28]. By “entailed”, we mean that these unifications and

constraints necessarily hold in all solutions.

4.8. Quantification of variables

Existential quantification of a variable v is expressed as the disjunction of

two BDD restrictions (see Section 4.6), in which v is respectively true and false.

Further, recall from Section 4.1 that Prolog atoms denote universally quan-

tified variables in CLP(B) expressions, and the quantifiers implicitly appear in

front of the entire expression.

As shown in Section 4.3, an important use case of universally quantified

variables is to indicate intended input variables of Boolean functions. Full prop-

agation would lead to unintended unifications in such cases and prevent users

from seeing such functional dependencies in answers. Therefore, during con-

straint propagation, we internally treat universally quantified variables in such

a way that they do not lead to any additional domain restrictions on other

variables.

4.9. Summary of implementation options and trade-offs

We briefly recall the different available implementation options, and summa-

rize the trade-offs we have made in the preceding sections. When implementing

a CLP(B) system, we have to make the following key decisions:

• implementation language: In particular, should we use Prolog or a

different programming language to implement the system?

6Taus Brock-Nannestad recognized and mentioned this application in personal communi-

cation with the author.
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• algorithmic approach: Should we base the solver on decision diagrams,

or use approaches that are typically used in SAT solvers, or choose a

different approach altogether? See Section 4.3.

• data structures: Should we use BDDs or other types of decision dia-

grams? Should we use hashes, AVL trees or other data structures?

• algebraic guarantees: In particular: Which consistency notion should

we guarantee? See Section 4.7 and Section 6.3.

Our aim was to provide a simple and sufficiently efficient CLP(B) system

with the eventual goal of running GUPU in a completely free environment.

Therefore, we have chosen a Prolog-based implementation to facilitate proto-

typing and to keep the system simple, even though a C-based implementation

would likely be faster. As one major benefit of this choice, our CLP(B) system

is portable to other Prolog systems (see Section 6.4).

As the primary data structures in our current system, we are using ordered

and reduced BDDs. This turned out to be a rather versatile choice, and BDDs

are sufficiently fast on a range of benchmarks. The native CLP(B) system

of SICStus Prolog uses a variant of these BDDs, also allowing negated nodes.

This may be an advantage in certain benchmarks, but also comes with additional

complexities. Therefore, to keep the system as simple as possible, we have chosen

the most basic BDDs as they were originally introduced. However, many other

types of decision diagrams also appear in the literature and could be useful for

various types of tasks. ZDDs [29] are a notable example.

As explained in Section 3.2, we are using AVL trees to store nodes and

intermediate results. It is also possible to implement hash tables in Prolog,

for example by using attributed variables (Section 4.5). As explained, we have

chosen AVL trees because they are a natural fit for Prolog, a common library

is already available in many Prolog systems, and the logarithmic overhead is

acceptable for our purposes. For comparison, SICStus Prolog uses a dedicated

unique table that is deeply integrated into the core engine and managed by the
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system’s garbage collector. This is a very efficient, though also a quite involved

solution.

The system we describe in this paper is simple, portable and – as we show

in Section 6 – even faster than the native CLP(B) system of SICStus Prolog on

several benchmarks. Therefore, we consider it an acceptable compromise among

the available implementation options.

5. New applications of library(clpb)

In this section, we present new applications of our CLP(B) system to illus-

trate the value of the new interface predicates that we provide. Importantly,

these applications all rely exclusively on the CLP(B) interface predicates that are

explained in Section 4. In other words, they do not use any low-level primitives

that directly manipulate a BDD. Instead, everything is expressed as sat/1 con-

straints, and the new interface predicates are used to count solutions and select

solutions etc. Similar functionality is also available in many BDD packages.

However, a CLP(B) system is much more convenient to use than a low-level

library, and different formulations of the same problem can be tried more easily.

5.1. Counting solutions

We now apply the new interface predicates of our CLP(B) solver to solve a

problem that asks for the number of solutions.

The full potential of CLP(B) constraints is often realized when solving count-

ing tasks that lack a highly regular structure and therefore cannot be solved by

more abstract combinatorial considerations. To illustrate this, we use the ad-

jacency map of the contiguous United States and DC as they appear in [30].

Fig. 2 (a) shows the syntax that is used, and Fig. 2 (b) shows our translation

to Prolog facts of the predicate edge/2.

We now use CLP(B) constraints to express independent sets of this graph.

Each node i corresponds to one Boolean variable bi. An independent set means

that for each undirected edge u− v in the graph, bu and bv are not both true.

That is, the following conjunction IND must hold:
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AL FL
AL GA
AL MS
...

(a)

edge(al, fl).
edge(al, ga).
edge(al, ms).
...

(b)

Figure 2: (a) Adjacency map and (b) corresponding Prolog facts

IND ≡
∧

u−v

¬bu ∨ ¬bv (1)

Fig. 3 shows the complete Prolog formulation of IND, using CLP(B) con-

straints and assuming suitable edge/2 facts. The semantics of list to assoc/2

and get assoc/3 are described in Section 4.6. The other used predicates are

very common Prolog predicates, and their meaning can be obtained from the

SWI documentation. Note that due to commutativity of ∨, it suffices to post

constraints on the ordered pairs as they appear in Fig. 2.

Using our CLP(B) system and the program shown in Fig. 3 together with the

“US” edge/2 facts7, the query ?- independent set(Sat), sat count(Sat,

Count). yields the solution Count = 211954906 within a few seconds.

1 independent_set(*(NBs)) :−
2         findall(U−V, edge(U, V), Edges),
3         setof(U, V^(member(U−V, Edges);member(V−U, Edges)), Nodes),
4         pairs_keys_values(Pairs, Nodes, _),
5         list_to_assoc(Pairs, Assoc),
6         maplist(not_both(Assoc), Edges, NBs).
7

8 not_both(Assoc, U−V, ~BU + ~BV) :−
9         get_assoc(U, Assoc, BU),
10         get_assoc(V, Assoc, BV).

Figure 3: Expressing (1) with CLP(B) constraints

5.2. Random solutions

In this section, we apply CLP(B) constraints to model an exact cover prob-

lem. The task is to cover an N × N chessboard with triominoes, which are

rookwise connected pieces with three cells.

7All edge/2 facts are available from: https://www.metalevel.at/clpb/edges.pl
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We use the following CLP(B) encoding: Each cell of the chessboard corre-

sponds to a column of a matrix (bij), and each possible placement of a single

triomino corresponds to one row. bij = 1 means that placing a triomino accord-

ing to row i covers cell j. For each row, we introduce a Boolean variable xk,

where xk = 1 means that we choose to place a triomino according to row i.

An exact cover of the chessboard means that for each set Sl of Boolean vari-

ables, Sl = {xk | bkl = 1}, exactly one of the variables in Sl is equal to 1, i.e.,

sat(card([1],list(Sl))) holds, with list(Sl) denoting a Prolog list correspond-

ing to Sl.

We give two concrete examples to clarify the encoding. First, consider the

very small case of a 2 × 2 chessboard. Clearly, only a single triomino can be

placed on such a small board, and there are exactly 4 ways to place it. The

matrix in Fig. 4 therefore comprises 4 rows, because each row corresponds to

one way to place a single triomino on the board. An exact cover means an

assignment to the Boolean variables xi such that in each of the following sets of

variables, exactly one is set to true: {x1, x2, x3}, {x1, x2, x4}, {x1, x3, x4} and

{x2, x3, x4}. Clearly, this is impossible.

















1 1 1 0

1 1 0 1

1 0 1 1

0 1 1 1

































x1

x2

x3

x4

















Figure 4: Matrix (bij) indicating 4 ways to place a triomino on a 2 × 2 chessboard

For comparison, Fig. 5 shows the case of a 6×6 board. It involves 148 decision

variables, one for each possible placement of a single triomino on the board.

In Fig. 6, subfigures (a) and (b) illustrate a common phenomenon when

using CLP(FD) constraints to solve such tasks: Successive solutions are often

very much alike. Simply adding randomization to labeling/2 is in general

not sufficient to guarantee random solutions due to potential clustering of so-
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















1 1 1 0 0 0 0 · · · 0 0 0

1 1 0 0 0 0 1 · · · 0 0 0
...

...
...

...
...

...
...

. . .
...

...
...

0 0 0 0 0 0 0 · · · 1 1 1
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Figure 5: Matrix (bij) indicating 148 ways to place a triomino on a 6 × 6 chessboard

(a) (b) (c) (d)

Figure 6: Exact covers of a 6 × 6 chessboard. (a) and (b) are successive solutions found

with CLP(FD) constraints. (c) and (d) are found with CLP(B), using random seeds 0 and 1,

respectively.

lutions. Subfigures (c) and (d) illustrate that solutions can be selected with

uniform probability with CLP(B) constraints, using the new interface predi-

cate random labeling/2.

5.3. Weighted solutions

We now use the new interface predicate weighted maximum/3 to maximize

the number of Boolean variables that are true.

The first example we use to illustrate this concept is a simple matchsticks

puzzle. The initial configuration is shown in Fig. 7 (a), and the task is to keep

as many matchsticks as possible in place while at the same time letting no

subsquares remain. For example, in Fig. 7 (b), exactly 7 subsquares remain,

including the 4 × 4 outer square. Fig. 7 (c) shows an admissible solution of

this task.
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(a) (b) (c)

Figure 7: (a) A grid of matchsticks, (b) exactly 7 subsquares remaining and (c) removing the

minimum number of matchsticks so that no subsquares remain

Such puzzles are readily formulated8 with CLP(B) constraints, using one

Boolean variable to indicate whether or not a matchstick is placed at a particular

position. Our new interface predicates make it easy to find and count solutions,

and also to maximize or minimize the number of used matchsticks.

CLP(B) constraints are not limited to very small puzzles and toy examples

though: For tasks of suitable structure, CLP(B) constraints scale quite well and

let us solve tasks that are hard to solve by other means.

In the next example (taken from [15]), we use CLP(B) constraints to express

maximal independent sets of graphs, which are also called kernels. The formu-

lation is based on the constraints described in Section 5.1: Boolean variables bi

again denote whether node i is in the set, and the following constraints KER are

posted to enforce maximal independent sets, using IND as defined in Eq. (1):

KER ≡ IND ∧
∧

v

(bv ∨
∨

u−v

bu) (2)

KER can be easily expressed in CLP(B) using a suitable extension9 of the

program shown in Fig. 3. In addition, each node i is assigned a weight wi. The

task is to find a maximal independent set that maximizes the total weight
∑

biwi.

For concreteness, let us consider the cycle graph C100, and assign each node i

the weight wi = (−1)ν(i), where ν(i) is the number of ones in the binary rep-

8A sample solution is available at: https://www.metalevel.at/clpb/matchsticks.pl
9The complete program is available at: https://www.metalevel.at/clpb/kernels.pl
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Figure 8: Maximal independent set of C100 with maximum weight (= 28)

resentation of i. The grey nodes in Fig. 8 show a maximal independent set

of C100 with maximum total weight. In the figure, nodes with negative weight

are drawn as squares, and nodes with positive weight are drawn as circles.

CLP(B) constraints yield the optimum (28) within a few seconds in this

example. Moreover, we can use our new interface predicates to compute other

interesting facts. For example, C100 has exactly 792 070 839 848 372 253 127 in-

dependent sets, and exactly 1 630 580 875 002 maximal independent sets.

6. Benchmarks

We now use several benchmarks to compare the performance of our system

with the CLP(B) library that ships with SICStus Prolog. We are using SWI-

Prolog version 7.5.12, and SICStus Prolog version 4.3.2. All programs are run

on an Intel Core i7 CPU (2.67 GHz) with 48 GB RAM, using Debian 8.1.

6.1. Benchmark instances

The benchmarks comprise examples from the literature that are also used

in [9] and other publications:

langford N : Describe a Langford Sequence of order N . This is a sequence

of the numbers 1, 1, 2, 2, . . . , N , N such that the two occurrences of

all k ∈ {1, 2, . . . , N} are k units apart.

pigeon N : The task of attempting to place N +1 pigeons into N holes in such

a way that each hole contains at most one pigeon. Clearly, this problem

is unsatisfiable. One interesting property of this task is that it can be
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formulated with card/2 constraints alone. Another interesting aspect is

that this task has no short resolution refutations in general [31].

queens N : Placing N queens on an N ×N chessboard in such a way that no

queen is under attack.

schur N : Distribute the numbers 1, . . . , N into 3 sum-free sets. A set S is

sum-free iff i, j ∈ S implies i + j 6∈ S. This is satisfiable for all N up to

and including the Schur number S(3) = 13, and unsatisfiable for N > 13.

triominoes N : Triomino cover (see Section 5.2) of an N ×N chessboard.

The code of all instances is available at https://www.metalevel.at/clpb/.

6.2. Benchmark results

We benchmark each example in three different ways, and the results are

summarized in Table 3: First, we build a single conjunction C of all clauses

and post sat(C). The columns titled sat show the timing results (in seconds)

of this call for SWI and SICStus, respectively. Then, we build a list Cs of

clauses and post maplist(sat, Cs). The timing result of this is shown in the

sats columns. Finally, we invoke taut(C, ), and the timing results of this

call are shown in the taut columns.

These benchmarks are a superset of those we presented in [6]. For the present

publication, we have re-run all benchmarks because we have since applied the

following changes: First, in order to more accurately measure specific running

times, we now create a fresh Prolog process for each of the shown goals (previ-

ously, all goals of the same instance were run in the same Prolog process), and

second, we have upgraded SWI-Prolog to the latest released version (previously

we used 7.3.7). These changes and expected variations over different runs due to

task scheduling, memory management and other factors cause small differences

in running times between the two publications. For greater precision, we now

also state all running times (less than 1 000 seconds) rounded to two decimal

places, whereas we previously used only one decimal place in some cases.

33

https://www.metalevel.at/clpb/


We highlight in bold the running times of those instances where our system

outperforms the native CLP(B) solver of SICStus Prolog.

SWI 7.5.12 SICStus 4.3.2

name vars clauses
sat sats taut sat sats taut

langford6 45 18 0.77 0.81 0.77 0.01 – 0.01

langford7 63 21 3.21 3.16 3.22 0.81 – 0.04

langford8 84 24 11.69 11.67 11.79 – – 0.17

pigeon8 72 17 1.12 1.16 1.12 0.08 0.03 0.07

pigeon9 90 19 2.91 2.94 2.92 0.23 0.03 0.30

pigeon10 110 21 7.49 7.34 7.33 0.92 0.04 0.95

queens6 36 302 12.59 12.66 12.73 0.01 2.43 0.01

queens7 49 490 65.52 65.79 66.64 3.26 20 753 0.04

queens8 64 744 388.08 389.18 392.32 368.42 – 0.33

schur13 39 139 10.54 10.68 10.68 0.28 2.58 0.17

schur14 42 161 12.80 12.79 12.81 0.48 8.74 0.49

schur15 45 183 17.31 17.40 17.54 1.14 28.01 1.17

triominoes5 94 25 3.48 3.54 3.57 0.01 – 0.03

triominoes6 148 36 21.95 21.84 22.03 – – 0.09

triominoes7 214 49 153.77 153.02 152.65 0.63 – 0.62

Table 3: Running times (CPU, in seconds) of different benchmarks

6.3. Performance analysis

There are several things worth pointing out about the results of Section 6.2,

and we now analyse them in more detail.

First, it is evident that the native CLP(B) solver of SICStus Prolog often

vastly outperforms our library. We can safely expect the SICStus library to be

at least two orders of magnitude faster than ours on many benchmarks. At least

in part, this huge difference in performance may be attributed to the fact that

SWI-Prolog itself is already more than three times slower than SICStus Prolog
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on benchmarks that are in some sense deemed to be representative of many ap-

plications. Neng-Fa Zhou, the author of B-Prolog, kindly maintains a collection

of these results at http://www.picat-lang.org/bprolog/performance.htm.

Since our library is written entirely in Prolog, it strongly depends on the per-

formance of the underlying Prolog system and its interface predicates that are

used by the solver.

Second, within SICStus Prolog, there is a large relative difference between

the sat and taut columns on one side, and the sats column on the other. In the

queens7 case, this difference is particularly pronounced, and it is also observ-

able in almost all other instances. We observe that the native CLP(B) system

of SICStus Prolog outperforms our library on almost all instances in the sat

and taut columns, but only on 6 of 15 instances in the sats column.

The cause of these phenomena is explained in [9], and can be verified by

looking into the available Prolog layer of library(clpb) that ships with SICS-

tus Prolog: The Prolog part comprises about 700 LOC, and reveals that pre-

processing is applied if a conjunction of formulas is posted via a single sat/1

or taut/2 call. In SWI-Prolog, we implicitly post individual sat/1 constraints

if the given formula is a conjunction. At the time of this writing, we do not

apply any preprocessing. Therefore, the three columns are almost identical in

SWI-Prolog. These results suggest that our system could benefit from apply-

ing similar preprocessing. We note though that the sats column is arguably

more representative of how a constraint solver is typically used in practice, since

constraints are often posted one after another instead of all at once.

Third, some of the benchmarks cannot be solved at all with the native

CLP(B) implementation of SICStus Prolog on this machine: We use “–” to

denote an insufficient memory exception.

Performance profiles are available from https://www.metalevel.at/clpb/

and show: With SICStus, on the 36 instances that can be run and profiled, on

average more than 80% of the executed instructions are accounted for by the

3 predicates clpb:bdd univ/[4,5,8], i.e., clpb:bdd univ with respective arity

4, 5 and 8. In fact, in more than half of the instances, these 3 predicates ac-
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count for more than 93% of the executed instructions. However, the granularity

of profiling SICStus Prolog is restricted by the fact that these predicates inter-

nally call built-in C-functions (such as ’$bdd build’/4 and ’$bdd parts’/4)

that remain opaque to the system’s profiler. The comparatively high memory

requirements (> 47 GB) of SICStus Prolog in some of these instances may hint

at opportunities for improvements of internal mechanisms in its CLP(B) system.

For comparison, predicates for reasoning about association lists (see Sec-

tion 4.6.3) account, on average, for about one third of the run time of each

instance in SWI-Prolog. The rest is dispersed across different predicates.

In SWI-Prolog, aliasing consistency (see Section 4.7) incurs less than 25%

CPU time overhead in 22 of these 45 instances. On average, aliasing consistency

incurs an overhead of ca. 50% in each instance. The highest relative overhead is

attained in the queens6 and schur13 instances, which take almost thrice as long

due to aliasing consistency. By removing all propagation from the constraint

solver, and thus forfeiting both notions of consistency that are explained in

Section 4.7, a 3-fold speedup can be achieved on average. Since we value these

algebraic properties, we guarantee both notions of consistency in our system.

6.4. Benchmark results with the SICStus port of our system

As already mentioned, our CLP(B) system is written entirely in Prolog and

is hence portable to other Prolog systems that support suitable interfaces for

attributed variables. To illustrate this characteristic of our implementation, we

have ported the whole system to SICStus Prolog and present the benchmark

results of this port in Table 4. We are presenting two sets of times in this table:

One with the native library(assoc) of SICStus Prolog, and one with a custom

assoc implementation based on AVL trees, as in SWI-Prolog. The differences

between the two sets of benchmarks stem from the fact that library(assoc) of

SICStus Prolog does not rebalance trees upon insertion of elements, and hence

accessing an element may take time linear in the size of the tree. The maxn

column shows the number of inner nodes of the largest BDD that arises while

running the respective benchmark instance. In these instances, operations on
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association lists take, respectively, about 90% and 50% of the time on average.

From these benchmarks, it is clear that our system is often significantly

slower than the native CLP(B) solver that ships with SICStus Prolog (see Ta-

ble 3). This is to be expected, because our system is written entirely in Prolog

and – as explained in Section 6.3 – does not apply any preprocessing. Neverthe-

less, our system can solve several benchmark instances that cannot be solved

with the native SICStus implementation due to insufficient RAM (48 GB) on

this machine configuration. We again use bold text to indicate where our port

outperforms the native CLP(B) system of SICStus Prolog.

On average, the SICStus port of our system is already more than 3 times

faster than the SWI version, and our goal is to improve it further in the fu-

ture. For example, we plan to add preprocessing as it is applied in the native

CLP(B) system of SICStus Prolog. The SICStus port is freely available from

https://www.metalevel.at/clpb/.

7. Testing a CLP(B) System

How can we make sure that what we have described in this paper is also

what we have actually implemented? On a very high level, we distinguish be-

tween white-box and black-box tests. Tests of the former category assess internal

features of the code, whereas tests of the latter category do not.

In this section, we give an example of stating and testing a property that is

called extra-logical or meta-logical because it falls outside the realm of pure logic

programs. In this section, we use black-box tests to try to find a counterexample

of this property. See also Appendix G.

Example: The documentation of labeling/1 (see Section 4.2) in SICStus

Prolog contains the following description: “Enumerates all solutions by back-

tracking, but creates choicepoints only if necessary.” (emphasis ours).

To reason about choicepoints within a Prolog program, we can use the pred-

icate call cleanup/2. This predicate takes two arguments, Goal and Cleanup,

and provides the following key feature: Cleanup is called after Goal succeeds
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library(assoc) AVL tree assoc

name maxn sat sats taut sat sats taut

langford6 1 757 0.80 0.76 0.85 0.28 0.24 0.26

langford7 6 045 8.19 8.01 7.94 1.12 1.04 1.00

langford8 22 191 90.12 90.28 91.94 3.27 3.16 3.12

pigeon8 8 976 3.40 3.66 3.54 0.25 0.35 0.23

pigeon9 22 546 21.32 21.57 21.41 0.76 0.75 0.71

pigeon10 55 316 127.08 127.84 126.82 1.81 1.89 1.90

queens6 956 4.49 4.23 4.27 3.93 3.81 3.61

queens7 3 044 14.57 15.03 13.93 12.73 15.74 23.72

queens8 10 726 75.30 80.03 76.08 93.35 61.05 53.65

schur13 3 107 7.91 7.44 6.55 2.88 2.94 2.72

schur14 3 989 9.55 9.70 10.13 3.70 3.51 3.86

schur15 4 888 15.43 15.66 15.45 5.12 4.93 5.16

triominoes5 4 295 9.81 9.85 10.38 1.35 1.30 1.44

triominoes6 22 103 280.89 286.58 281.59 6.27 6.34 6.02

triominoes7 103 003 10 199 10 129 10 187 46.48 47.22 44.05

Table 4: Running times (CPU, in seconds) using the SICStus port of our system

deterministically, which means that no more choicepoints remain. The predi-

cate call cleanup/2 is available in both SWI-Prolog and SICStus, and we refer

to the documentation of these systems for further semantic details. The core

idea of our approach is to use call cleanup/2 to post the unification Det=det

as soon as no more choicepoints remain. Hence, if dif(Det, det) succeeds af-

ter the call (dif/2 means that its arguments are different), then a choicepoint

remains.

Fig. 9 (a) shows how a subset of all CLP(B) expressions (see Section 4.1)

can be systematically generated. A DCG10 is used to generate expressions of

10We explain this in our DCG primer at https://www.metalevel.at/prolog/dcg

38

https://www.metalevel.at/prolog/dcg


sat(a)   −−> [].
sat(_)   −−> [].
sat(~X)  −−> [_], sat(X).
sat(X+Y) −−> [_], sat(X), sat(Y).
sat(X#Y) −−> [_], sat(X), sat(Y).

(a)

counterexample(Expr) :−
        length(Ls, _), phrase(sat(Expr), Ls),
        sat(Expr), term_variables(Expr, Vs),
        setof(Vs, labeling(Vs), Sols),
        setof(Vs, labeling_nondet(Vs), Sols).

labeling_nondet(Vs) :−
        call_cleanup(labeling(Vs), Det=true),
        dif(Det, true).

(b)

Figure 9: (a) Generating valid CLP(B) expressions (b) describing a counterexample to the

intended determinism.

bounded depth.

Fig. 9 (b) describes a counterexample to the property stated above. We are

looking for an expression Expr such that the set Sols of solutions that are found

by exhaustively labeling all variables Vs of Expr is equal to the set of solutions

that are found while a choicepoint still remains. This means that the remaining

choicepoint was in fact unnecessary.

Running the code in SICStus Prolog 4.3.2 immediately yields:

| ?- counterexample(E).

E = a+ ˜_A,

sat(_A=:=_B*a) ?

This means that the property in fact does not hold, which came as a surprise

to us. The same result is also found in our CLP(B) system. For this reason, we

do not state such a property in the documentation of our system.

Note also that the found expression exemplifies the provision explained in

Section 4.8.

8. Conclusion and future work

We have presented the first BDD-based CLP(B) system that is freely avail-

able. It features new interface predicates that allow us to solve new applications

with CLP(B) constraints, and can solve several benchmark instances that other

systems cannot solve.
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Implementing the system in Prolog has allowed us to prototype many ideas

quickly. The implementation provides a high-level description of all relevant

ideas, and is easily portable to other Prolog systems that support attributed

variables, which we have shown by providing a port to SICStus Prolog.

We hope that the availability of a free BDD-based CLP(B) system leads

to increased interest in CLP(B) constraints within the Prolog community, and

encourages other vendors to likewise support such libraries.

Ongoing and future work is focused on additional test cases to ensure the

system’s correctness, improving the performance of the SICStus port, and port-

ing the system to further Prolog systems. Stefan Israelsson Tampe is currently

porting the solver to Guile-log, a Prolog system based on Guile. Guile-log is

available from: https://gitlab.com/gule-log/guile-log.

Additional interface predicates may be needed to cover further applications

of BDDs and other types of decision diagrams, such as those that are outlined

in [32]. Careful design of these predicates is necessary to provide sufficient

generality without exposing users to low-level details of the library.
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Appendix A. Inspecting BDDs in our system

Our system allows inspection of BDDs: If the Prolog flag clpb residuals

is set to the value bdd, then Prolog terms that represent the BDDs are emitted

as answers, using pairs of the form Node-ITE, where Node is a unique node

identifier, and ITE is an if-then-else node as explained in Section 3.1.

Fig. A.10 shows an example of a BDD and its resulting representation as

Prolog terms. In this figure, the dotted lines correspond to V = 0. The Boolean

function that is represented by this BDD is true iff precisely two of the three

variables X, Y and Z are 1. In our CLP(B) system, this function can be expressed

(see Section 4.1) as card([2],[X,Y,Z]).

X

Y Y

Z

false true

?- set_prolog_flag(clpb_residuals, bdd).

true.

?- sat(card([2],[X,Y,Z])).

bdd([node(4)- (X->node(3);node(2)),

node(2)- (Y->node(0);false),

node(0)- (Z->true;false),

node(3)- (Y->node(1);node(0)),

node(1)- (Z->false;true)]).

Figure A.10: A BDD corresponding to the CLP(B) constraint card([2],[X,Y,Z])

In our system, the order of the variables reflects the order in which the vari-

ables are first encountered in CLP(B) constraints, using a left-to-right, depth-

first traversal of the Prolog terms that represent the constraints. Hence, differ-

ent orders can easily be tried by first using the variables in the desired order

in a suitable tautology. The tautology +[1,V1,V2,...] is a suitable idiom

for enforcing the variable order V1, V2 etc., because it denotes the disjunction

true∨V1∨· · · which is always true, yet assigns suitable indices to the variables.

See Section 4.1 for more information about this syntax.
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Appendix B. Monotonicity, completeness and incompleteness

In this section, we define several key concepts and use them to explain prop-

erties of our system that are important in more specialized applications.

First, let us consider the declarative meaning of Prolog queries. Declara-

tively, we can read a query as the question “Are there any solutions subject

to the stated constraints?” In queries, logical variables are thus existentially

quantified.

In response to a (terminating) query, the Prolog system provides one or more

answers. Each answer describes a set of solutions. The most important answers

are:

• true

• false

• ground solutions

• residual goals that indicate constraints that are still pending.

There are also other answers such as errors for various exceptional situations.

We say that a query fails if the answer is false (“no” etc. in some systems),

and we say it succeeds if the answer is true (“yes” etc. in some systems) or

a concrete solution is reported. If there are alternatives, the system is said to

leave a choicepoint after reporting the first answer.

If the system reports residual goals, then these goals are said to flounder.

These goals may be satisfiable or unsatisfiable. When residual goals are reported,

we also say that the query succeeds conditionally. The notion of residual goals

is especially important in the context of constraint solvers, and also motivates

the following definition:

Definition (completeness): A CLP system is called complete iff the fol-

lowing property holds: If residual goals are reported, then they are satisfiable.

In general, constraint systems do not satisfy this property. Instead, they typ-

ically require an explicit additional step that uses exhaustive search to determine
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whether the residual goals admit a solution. We call such systems incomplete,

alluding to the fact that constraint propagation has not derived the ultimate

conclusion (which is unsatisfiability of the whole query) from the posted con-

straints. Note that the words complete and incomplete may also be used in a

different context to denote whether or not a predicate reports all solutions that

exist.

We now define an important class of Prolog programs that we call mono-

tonic programs.

Definition (monotonicity): A Prolog program P is called monotonic iff

the following properties both hold for all queries Q that can be asked over P :

(1) If Q fails, then adding further constraints cannot make it succeed. (2) If

Q succeeds, then removing any constraint from it cannot make it fail.

Monotonicity is of great importance in some applications. For example, var-

ious search strategies such as iterative deepening rely on it and will in general

not work as intended over logic programs without it. Also, declarative debug-

ging11 in the form of automated generalizations and specializations relies on this

property.

To the best of our knowledge, all currently available CLP(B) systems are

not monotonic. For instance, in available systems, adding a constraint can yield

new solutions, which clearly runs counter to the declarative semantics we expect

from constraints. Consider for example the following queries and answers with

the CLP(B) system of SICStus Prolog:

| ?- sat(X), X = 1+1.

no

| ?- X = 1+1, sat(X), X = 1+1.

X = 1+1 ? ;

From a logical point of view, this behaviour is highly problematic: It runs

counter to our expectation that making a query more general can at most in-

11For more information, please see: https://www.metalevel.at/prolog/debugging
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crease the set of solutions. The reason for this behaviour is the so called defaulty

representation of SAT formulas: When a variable is encountered in CLP(B) ex-

pressions, the constraint system impurely commits to regarding it as standing

for a concrete Boolean value.

For compatibility with SICStus Prolog and for convenience, this is also the

behaviour we have adopted. However, as of SWI-Prolog 7.3.20, ours is the

first CLP(B) system that supports a monotonic execution mode in addition

to the non-monotonic default mode. In our system, the monotonic execution

mode is enabled by setting the Prolog flag clpb monotonic to true. In the

SICStus port, the mode is enabled by asserting the fact clpb:monotonic. The

setting influences a specific and comparatively easily assessable source fragment

of our solver, which is executed when CLP(B) expressions are being parsed.

When the monotonic execution mode is enabled, then the system yields an

instantiation error if the SAT formula is not yet sufficiently instantiated. In the

cases shown above, we get respectively:

?- sat(X), X = 1+1.

ERROR: Arguments are not sufficiently instantiated

?- X = 1+1, sat(X), X = 1+1.

X = 1+1.

In the monotonic execution mode, we need a way to explicitly mark variables

that stand for concrete Boolean truth values. Only for such variables, further

inferences can be soundly derived. In the monotonic execution mode, you have

to write v(X) instead of X to denote the logical variable X that stands for a

concrete Boolean value. With this syntax, the issue above cannot arise.

If we consistently use this wrapper for variables that occur in CLP(B) ex-

pressions, then adding constraints cannot yield new solutions, and removing

constraints can at most yield more solutions.
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Appendix C. Design principles for new interface predicates

The new interface predicates described in Section 4.4 are not yet found in

any other CLP(B) system, and we were therefore free to devise their seman-

tics as we saw fit. There are two general design principles that we applied,

and which we now illustrate by using the two predicates sat count/2 and

weighted maximum/3 as examples.

The first design principle we applied was to preserve, as far as possible, the

relational nature of user programs. Enabling the monotonic execution mode

that we explained in Appendix B is a necessary precondition for this property.

As explained in that appendix, not even sat/1 is a true relation in the default

execution mode.

From this principle, it already follows that weighted maximum/3 must be

complete. This means that, as described in Section 4.4, it generates all solu-

tions that attain the optimum. When implementing such an optimizing pred-

icate and designing its interface, it is tempting to impurely commit to one of

several optima. In fact, we see from CLP(FD) systems and their optimization

predicates that committing to a single solution is the behaviour that is most

widely implemented.

However, it is sometimes impossible to attain logical purity in this sense.

For example, sat count/2 is intrinsically non-monotonic, since it refers to the

extra-logical number of admissible assignments subject to the currently posted

constraints. For this reason, we cannot expect to preserve commutativity of

conjunction when sat count/2 is one of the goals. We can still approximate

monotonicity even in this case though, and attain the goal of preserving declar-

ative properties as far as possible: In the case of sat count/2, it is easy to see

that (again, assuming that the monotonic execution mode is enabled) adding a

constraint can at most reduce, never increase the number of solutions that are

reported.

Observation: Extending the number of variable assignments that make

the posted constraints succeed implies that additional variables are introduced
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by means of unifications like Var = (X+Y), where X and Y are fresh variables.

Such expressions are not valid CLP(B) expressions if they are wrapped with the

dedicated v/1 functor, so the term v(X+Y) yields a domain error if it occurs in

sat count/2 in place of v(Var). �

The second design principle we applied was to increase the versatility of

interface predicates as far as possible.

Let us consider again the semantics of sat count/2. When thinking about

a suitable semantics of sat count/2 or a similar predicate, implementors of

CLP(B) systems may at first glance be tempted to somehow refer to the BDD

corresponding to Expr. There are at least two reasons for this: First, it would

simplify the implementation of such interface predicates. Second, many text

books and publications that outline similar computations on BDDs almost nec-

essarily allude to BDDs when discussing the implementation of this operation,

so it is tempting to adopt a similar BDD-centric view also in interface predicates

of a CLP(B) system.

We have consciously chosen not to do this, and instead adopted a view that is

based solely on the semantics of the formula as it occurs in the first argument of

this interface predicate. Note that, in comparison with the BDD-centric view,

this incurs an overhead in the implementation and execution of the interface

predicate. Let S denote the set of variables that occur in the same BDD as one

of the variables in Expr, but do not themselves occur in Expr. To compute the

number of solutions, sat count/2 first constructs a BDD for the conjunction

of Expr and all constraints posted so far. Before actually counting the number

of solutions via this BDD, the variables in S must be projected away.

Suppose, on the other hand, that we adopt the BDD-centric view. Then

sat count/2 can be implemented without even computing S, let alone project-

ing away such variables.

The reason we have chosen the former semantics over the latter becomes

clear after a bit of reflection: Given the former semantics, the latter can be

easily obtained by users themselves. One way to do this is to simply involve the

variables of S also in Expr, in such a way that it does not change the number of
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solutions. Most users will easily find a way to do this. The reverse does not hold:

Many users who are interested in CLP(B) constraints may find it exceedingly

hard to selectively quantify variables existentially in the way described above,

although the semantics described above are useful for them in many cases.

A concrete example will make this clear. Consider the following Prolog query

and answer:

?- sat(A+B), sat_count(B+C, Count).

Count = 3,

sat(A=\=A*B#B).

Here, S = {A}, and therefore A must be projected away in the BDD before

counting solutions. If A were not projected away, we would obtain 5 solutions

instead of 3, because the expression (A+B)*(B+C) admits 5 satisfying assign-

ments. We can easily see this by incorporating A in the expression in such a

way that the new subformula is a tautology:

?- sat(A+B), sat_count((1+A)*(B+C), Count).

Count = 5,

sat(A=\=A*B#B).

Adding appropriate tautologies to the formula is easy to accomplish, whereas

projecting away exactly the right variables is not as easy for many practitioners.

In the future, when deciding between semantic variants of further interface

predicates, we will again apply the design principle derived from the above

considerations to guide us.
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Appendix D. Boolean logic, SAT and BDDs

CLP(B) constraints and their implementation using BDDs are found at the

intersection of several topics that are both of great interest and comparatively

easy to understand for students of logic and computer science. This makes

CLP(B) constraints particularly well suited as supplementary teaching material

when introducing students to Boolean logic, expressiveness of SAT formulas,

digital circuits, decision diagrams and several other topics that arise in this

context.

We illustrate this important didactic application of CLP(B) constraints by

means of a simple logic puzzle that appears in Raymond Smullyan’s What Is

the Name of this Book and Maurice Kraitchik’s Mathematical Recreations. This

example also serves to illustrate and reinforce the concepts that are mentioned

in this paper, such as global consistency.

Task: You are on an island where every inhabitant is either a knight or a

knave. Knights always tell the truth, and knaves always lie. You meet

3 inhabitants. A says: “B is a knave.” B says: “A and C are of the same

kind.” What is C?

We use Boolean variables A, B and C to represent the inhabitants. Each vari-

able is 1 iff the respective inhabitant is a knight. The task can be formulated as

the conjunction of two CLP(B) goals that relate the statements to inhabitants:

?- sat(A =:= ˜B), sat(B =:= (A=:=C)).

C = 0,

sat(A=\=B).

Note that no search via labeling/1 is necessary in this example: The con-

sistency method described in Section 4.7 has deduced that C is a knave. The

residual goals also show that A and B are different kinds of inhabitants.

To further help teaching Boolean constraints and BDDs, we have imple-

mented a BDD renderer in the web-based swish platform [33]. The renderer

allows all users to easily create and export drawings of BDDs.
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Appendix E. Attributed variables: Properties and Desiderata

At the time of this writing, there is no consensus across different Prolog

systems regarding the interface predicates for attributed variables. Two differ-

ent interfaces used by major implementations are, respectively, the one used

by SICStus Prolog, and the one used by hProlog and SWI-Prolog. An excel-

lent comparison of the similarities and differences between the two interfaces is

contained in [25]. Most of the commonly desired functionality of attributed vari-

ables can be expressed with both interfaces, but one particularly striking differ-

ence remains: In SWI-Prolog, attr unify hook/2 (see Section 4.5) is called with

all bindings in place after a unification, whereas in SICStus Prolog, unifications

are undone before an analogous interface predicate (verify attributes/3) is

called.

During the implementation of CLP(FD) and CLP(B) systems, we have col-

lected considerable implementation experience with both interfaces, and, from

the available alternatives, endorse the SICStus interface and its greater gen-

erality for the following important reason: The interface used in SWI-Prolog

is not general enough to express important classes of constraint solvers. We

substantiate this statement with a detailed example in Appendix F.2.

In addition to its limited generality, the interface used in SWI-Prolog also

makes reasoning about unifications more error-prone. For example, when unify-

ing two CLP(B) variables, the unification hook is called with the two variables

already aliased and in fact identical. In our experience, failure to take possible

aliasings into account is a common mistake when working with the SWI in-

terface, and it would improve ease of use considerably if, as in the SICStus

interface, unifications were undone before the unification hook is invoked.

Based on these considerations, we formulate:

Desideratum 1: Attributed variable interfaces must allow reasoning at a

point where the unifications are not (yet) in place.

It is clear that the SICStus interface has some performance impact, because

unifications have to be undone. In our view, this small disadvantage is com-
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pletely negligible when taking into account the increased generality and ease of

use of the SICStus interface.

In both SWI-Prolog and SICStus, there is a predicate called copy term/3,

which allows us to explicitly reason about the constraints an attributed variable

is involved in. In SWI-Prolog, the third argument is a list of goals, whereas in

SICStus Prolog, it is either a single goal or a conjunction of several goals. In

this case, we prefer the SWI-Prolog variant of copy term/3, because it makes

it easier to symbolically reason about such goals. We therefore formulate:

Desideratum 2: Goals stemming from attributed variables should be made

accessible as lists of goals.

Obviously, a simple wrapper predicate can be used to obtain this behaviour

in both system, but it is still worth pointing out the desired behaviour for future

implementors of attributed variable interfaces.
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Appendix F. CLP(B) with other types of decision diagrams

BDDs are not the only kind of decision diagrams that are practically useful,

and the question arises whether other types of decision diagrams are not at least

equally suitable as the basis of CLP(B) systems.

Appendix F.1. Zero-suppressed Binary Decision Diagrams

To collect preliminary experiences with different implementation variants,

we have created a variant12 of library(clpb) that is based on Zero-suppressed

Binary Decision Diagrams (ZDDs). The key idea of ZDDs [29] is to assign a

slightly different meaning to the diagram: In ZDDs, a branch leading to 1 only

means true if all variables that are skipped in that branch are zero. ZDDs are

therefore especially useful when many variables are zero in solutions. This is

the case in many covering and tiling tasks such as the one shown in Section 5.2.

As an illustrating example, Fig. F.11 shows a ZDD that represents the same

Boolean function whose BDD is shown in Fig. A.10: card([2],[X,Y,Z]) is

true iff precisely two of the three variables are 1. Note that due to the new

conventions, fewer internal nodes are needed in this case. This is of course not

always the case. Although one can show (see [15]) that the relative difference

between the number of nodes in a BDD and a ZDD that represent the same

function cannot be arbitrarily far apart, the choice of either representation is

often a significant performance factor in practice.

Appendix F.2. ZDD-based implementation

The ZDD-based variant of library(clpb) does not feature all the function-

ality that the BDD-based version provides. This is due to two main reasons:

The first reason is that, due to the different semantics of the diagrams, a ZDD-

based approach necessitates that all variables be known in advance, at least if we

want to avoid rebuilding all ZDDs every time a new variable occurs. Therefore,

a special library predicate must be called before using the ZDD-based version

12The variant is freely available at https://www.metalevel.at/clpb-zdd

55

https://www.metalevel.at/clpb-zdd


X

Y Y

Z

false true

?- Vs = [X,Y,Z],

zdd_set_vars(Vs),

sat(card([2],Vs)).

Vs = [X, Y, Z],

zdd([node(11)- (X->node(10);node(9)),

node(9)- (Y->node(6);false),

node(6)- (Z->true;false),

node(10)- (Y->true;node(6))]).

Figure F.11: A ZDD corresponding to the CLP(B) constraint card([2],[X,Y,Z])

in order to “declare” all Boolean variables that appear in the formulation. The

ZDD-based variant is thus not a drop-in replacement of the BDD-based version

that ships with SWI-Prolog. This shortcoming is surmountable in principle, for

example by rebuilding existing ZDDs when a new variable is encountered.

The second reason is that the shortcomings of SWI-Prolog’s interface predi-

cates for attributed variables are especially severe when ZDDs are involved. One

way to see this is to consider the ZDD shown in Fig. F.11 and the following con-

junction of goals: X=1, Y=1, Z=1. After the first two unifications (X=1,Y=1),

the ZDD shows that only Z=0 can still make the Boolean function true, be-

cause Z is a variable that does not occur on this path. We therefore expect

a ZDD-based CLP(B) system to deduce Z=0, and therefore the third unifica-

tion (Z=1) to fail. Note in particular that it is necessary to reason about

whether variables (still) occur in the ZDD. Suppose, on the other hand, that we

had posted all unifications equivalently in the form of a single simultaneous uni-

fication [X,Y,Z]=[1,1,1]. With the interface as used in SWI-Prolog, we can

no longer explicitly reason about the variables occurring in the ZDD, because

at the time the unification hook is called, all variables are already instantiated

to ground integers in this example. To the best of our knowledge, we are the

56



(a) (b)

Figure F.12: (a) Project Euler Problem 161: Covering a 9 × 12 grid with triominoes; (b)

Covering a chessboard with monominoes, dominoes and triominoes

first implementors to consider ZDD-based reasoning with attributed variables,

and therefore also the first to find this shortcoming of the SWI interface.

Appendix F.3. Applications of a ZDD-based CLP(B) system

So far, we have collected only very limited experience with ZDDs, in part also

due to the mentioned limitations of SWI-Prolog’s interface predicates. Never-

theless, we would like to point out two interesting tasks for which the ZDD-based

variant is very well suited, and hint at planned future developments.

First, we extend the triomono tiling task to a 9 × 12 grid. One solution is

shown in Fig. F.12 (a). Project Euler Problem 161 asks for the number of such

tilings. Using the ZDD-based variant, it takes about 13 GB RAM and 2 days of

computation time to construct a ZDD that represents all solutions and compute

the number (which is 20,574,308,184,277,971). Using the BDD-based version of

library(clpb) requires more than 4 times as much memory.

Second, we allow, in addition to triominoes, also monominoes and dominoes,

and cover an 8×8 chessboard. Fig. F.12 (b) shows one solution. With the ZDD-

based variant, 1 GB RAM suffices to compute the number of possible coverings

(there are exactly 92,109,458,286,284,989,468,604 of them). Using BDDs takes

about 10 times as much memory.

Many other interesting applications of ZDDs are described in [15], and we

plan to make many of them accessible in future versions of this library variant.

This may require suitable additional interface predicates.
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Appendix G. Further approaches for testing a CLP(B) system

In this appendix, we outline two further approaches that we applied for test-

ing our CLP(B) implementation. This augments Section 7 with more detailed

information that may be valuable for system implementors.

Appendix G.1. Testing properties dynamically

Prolog is a very dynamic language and does not provide static type checking

as a built-in feature. Nevertheless, Prolog code can be very easily13 inspected

and analyzed, and it is possible to build libraries that augment Prolog with

static type checking (see [34] for an example of this approach).

However, the properties we would like to formulate and test go beyond ver-

ifying commonly available types. For example, in our CLP(B) system, one of

the most important properties is without doubt that all BDDs must be ordered

and reduced, as explained in Section 3.1. Ensuring that this property holds

throughout all BDD transformations is currently out of reach for static analysis

tools. Therefore, we test such important properties dynamically: If the Prolog

flag clpb validation is set to true, then our system tests at run time whether:

• every BDD is ordered and reduced

• all occurring BDD nodes are correctly registered in their branching vari-

able’s association list (see Section 4.6).

Such dynamic tests were extremely helpful during development of our sys-

tem. We have found several cases where at least one of the desired invariants

was violated due to mistakes in our implementation. During development, we

always used our system with all dynamic tests enabled. Of course, executing

such (white-box) tests at run time may slow down the solver considerably, and

therefore these tests are by default turned off in the released version of our

system.

13Prolog code is naturally represented as a Prolog term; for this reason, Prolog is a so-called

homoiconic language.
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Appendix G.2. Black-box tests of interface predicates

We now turn to black-box tests of the interface predicates that are explained

in Section 4.2. In contrast to the approach described in the previous section, the

focus is now on properties that can be observed without analyzing or changing

the source code of the system in any way. For concreteness, let us consider

sat/1 as an important representative of our system’s interface predicates. How

can we make sure that sat/1 behaves as described in this paper? We distinguish

two approaches:

1. test against a reference implementation such as SICStus Prolog

2. test invariants within the same system.

Option (1) is clear: We simply try out sat/1 with different arguments,

and compare its results with those of SICStus Prolog. We have run many

such test cases and found several discrepancies between the two systems during

development. All of them turned out to be mistakes in our system, and we have

corrected all mistakes we found. As of this writing, our test cases have been

running for several weeks without finding any further discrepancies, making us

more confident about our system’s correctness.

Option (2) again tests properties that need to be preserved, and the focus

is now on properties that can be tested within the same system. For example,

one property that is easy to formulate and test is commutativity of conjunction,

which holds for CLP(B) constraints and unifications if the monotonic execu-

tion mode described in Appendix B is enabled. Again, we tried to find cases

where this property is violated in our system. We found it particularly worth-

while to test commutativity of conjunctions that involve both labeling/1 and

sat/1 goals, because the available constraints typically work correctly if all

variables are already instantiated and serve as a useful reference in this case.

During development, we have corrected several mistakes that were found with

such tests. As of this writing, no further mistakes have been found after several

weeks of computation time.
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