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Abstract. We present a new constraint solver over finite domains, freely
available as library(clpfd)1 in SWI-Prolog. Our solver has several
unique features, which we describe in this paper: Reasoning over arbitrar-
ily large integers, always terminating propagation, and a domain-specific
language that concisely expresses the full semantics of constraint reifica-
tion. The library is entirely written in Prolog and can be easily ported to
other Prolog systems that support attributed variables. The constraint
solver is fast enough for teaching and research purposes and is already
being used in courses at several universities in France, Germany, Italy,
Austria and other countries.

1 Introduction

CLP(FD), constraint logic programming over finite domains, is a declarative
formalism for describing combinatorial problems such as scheduling, planning
and allocation tasks ([1]). It is one of the most widely used instances of the
general CLP(·) scheme that extends logic programming to reason over specialized
domains. Since CLP(FD) is applied in many industrial settings like systems
verification, it is natural to ask: How can we implement constraint solvers that
are more reliable and more concise (and thus easier to read and verify)?

One frequent source of erroneous answers in common constraint systems are
their – either implicit or explicit – restrictions to quite small values. A common
limit is the magnitude of machine-size integers, and sometimes slightly below
or above that. In some systems, such as GNU Prolog ([2]), a domain’s limits
additionally depend on properties of the domain itself, such as the presence of
holes. Some constraint solvers, such as SICStus Prolog ([4]), use symbolic bounds
to represent default domains and never explicitly mention (in top-level answers)
the underlying finite limits that are the actual boundaries for all variables. The
constraint solver of B-Prolog ([5]) avoids exposing implicit limits by showing
symbolic residual constraints in answers when necessary. ECLiPSe ([3]) loses
propagation strength and precision when domains exceed certain bounds.

Different constraint solvers do not behave consistently when their pre-defined
finite limits are exceeded. For example, in GNU Prolog, the system’s answer can

1 Documentation: http://www.swi-prolog.org/man/clpfd.html



indicate when values might have been lost due to the system’s limited domains,
but – according to the manual – in some cases it cannot detect the loss of
values and no message is emitted. Other systems, such as SICStus Prolog, raise a
representation error when values outside the finite default domains arise. Neither
behaviour is completely satisfying for users who are working with such values.

In this paper, we present a new finite domain constraint solver that over-
comes this problem by allowing to reason over arbitrarily large integers, also
called bignums. We also discuss how terminating propagation can be ensured in
the presence of arbitrarily large domains, which is of theoretical interest in ter-
mination analysis of constraint logic programs, and also of practical importance
for users. Finally, we present a domain-specific language (DSL) that concisely
describes the full semantics of constraint reification in our solver.

2 Related work

Traditionally, finite domain constraint solvers have mostly been used to tackle
problems that involve only quite small values. This is the case in many schedul-
ing, allocation and combinatorial optimisation tasks for which constraint-based
approaches are very well suited. A well-known benchmark library for constraints,
CSPLib ([6]), consists almost exclusively of such examples. Therefore, the re-
stricted default domains of existing constraint solvers may so far not have been
perceived as very limiting.

On the other hand, the need for arbitrary precision integer arithmetic is
widely recognised, and many common Prolog systems, such as SICStus ([4]),
SWI ([7]) and YAP ([8]) provide transparent built-in support for arbitrarily
large integers. This is of practical importance for several applications, such as
encryption and authentication tasks. It is therefore surprising that no Prolog
system has so far extended this support to its CLP(FD) solver as well.

The issue of inherent limits has so far not been given much attention. A no-
table exception is [9], where Apt and Zoeteweij remark for one of their examples:
“the cost of using arbitrary length integers is roughly a factor four”. However,
they tested the impact of bignums only on a specialised hand-coded example.

Support for arbitrarily large values is taken for granted in solvers over rational
numbers, such as Holzbaur’s CLP(Q) implementation ([10]). CLP(Q) can be
used to tackle some problems that can be solved with CLP(FD) solvers. In the
presence of bignums, the converse also holds, since some constraint problems
over rationals can be mapped to problems over integers by multiplying all values
with a common multiple of all denominators.

In the context of CLP(FD), indexicals ([15]) are a well-known example of
a DSL. The main idea of indexicals is to declaratively describe the domains of
variables as functions of the domains of related variables. The indexical language
consisting of the constraint “in” and expressions such as min(X)..max(X) also
includes specialized constructs that make it applicable to describe a large vari-
ety of arithmetic and combinatorial constraints. GNU Prolog ([19]) and SICStus



Prolog ([18]) are well-known Prolog systems that use indexicals in the imple-
mentation of their finite domain constraint solvers.

The usefulness of deriving large portions of code automatically from shorter
descriptions also motivates the use of variable views, a DSL to automatically
derive perfect propagator variants, in the implementation of Gecode ([20]).

Action rules ([21]) and Constraint Handling Rules ([22]) are Turing-complete
languages that are very well-suited for implementing constraint propagators and
even entire constraint systems (for example, B-Prolog’s finite domain solver).

3 Constraint solving over arbitrarily large integers

As an example where constraint solving over large integers is useful, consider
the so-called “7-11 problem” ([11]), which is the following task: The total price
of 4 items is $ 7.11. The product of their prices is $ 7.11 as well. What are
the prices of the 4 items, and how many solutions are there? In [11], Pritchard
and Gries employ elaborate problem-specific considerations to solve the problem
efficiently. As a highly non-linear problem, it is beyond the current abilities of
common CLP(Q) solvers. Even if it were possible to obtain a single solution
with such solvers, they would typically not be able to enumerate all solutions.
In contrast, the problem can be efficiently, completely and conveniently solved
with CLP(FD) solvers that feature large enough integers. A CLP(FD) query for
solving the problem is shown in Fig. 1. The product of all variables (line 2) equals
a quite large constant, which exceeds the capabilities of most existing CLP(FD)
solvers on still common 32-bit platforms. Given arbitrarily large integers, other
interesting number-theoretic problems can also be expressed in CLP(FD).

1 ?− Vs = [A,B,C,D], Vs ins 0..711,
2    A * B * C * D #= 711*100^3,
3    A + B + C + D #= 711,
4    A #>= B, B #>= C, C #>= D,
5    labeling([ff], Vs).

Fig. 1. Solving the 7-11 problem with a single query

Perhaps most importantly, with arbitrarily large integers, CLP(FD) con-
straints can be used as a fully declarative alternative to conventional built-in
arithmetic predicates over integers in all places. Consider for example the def-
inition of n factorial/2 and the sample interactions shown in Figure 2, which
would lead to instantiation errors with built-in arithmetic (is/2 etc.).

4 Implementation

We implemented our constraint solver in Prolog, using attributed variables as
described by Demoen ([12]). This interface is provided by (among others) SWI-
Prolog and YAP, and our solver is freely available in the latest development



1 n_factorial(0, 1).
2 n_factorial(N, F) :− N #> 0,
3         N1 #= N − 1, F #= N * F1,
4         n_factorial(N1, F1).
5

6 ?− n_factorial(47, F).
7 F = 258623241511168180642964355153611979969197632389120000000000 ;
8 false.
9

10 ?− n_factorial(N, 1).
11 N = 0 ;
12 N = 1 ;
13 false.
14

15 ?− n_factorial(N, 3).
16 false.

Fig. 2. CLP(FD) definition of n factorial/2 and sample queries

versions of these systems as library(clpfd). At the time of this writing, the
library consists of about 6200 lines of Prolog code, including user documentation
and comments.

Domains are represented as interval trees internally. The atoms inf and sup

stand for infimum and supremum of the set of integers, and denote negative
and positive infinity, respectively. This notation is borrowed from the constraint
solver of SICStus Prolog, where these atoms are used to mask the underlying
finite limits.

If all domains are finite, comparisons and computations can be delegated to
the Prolog system’s built-in support for big integers. For the infinite case, these
operations must be generalised appropriately. We did this by implementing a
Prolog predicate that behaves like is/2 and can also handle the symbolic domain
boundaries. Similar predicates generalise the built-in comparisons.

We have implemented the common arithmetic constraints and equivalence re-
lations (which are also reifiable), and some global constraints like all distinct/1
(arc-consistent), global cardinality/2 (arc-consistent), circuit/1 and automa-

ton/3. The overhead of using generalised predicates for infinities is below 30%
for many examples and could most likely be further reduced by implementing
these predicates in C. This agrees with Apt and Zoeteweij ([9]), who estimate
this overhead to be far less prominent in a full-fledged constraint solver than
in isolated examples, and seems a small price for the new applications that this
feature allows.

To transparently bring the performance of CLP(FD) constraints closer to
that of conventional arithmetic predicates when the constraints are used in
modes that can also be handled by built-in arithmetic, the library makes use
of goal expansion/2 to rewrite constraints at compilation time, automatically
inserting code that dynamically checks whether built-in arithmetic predicates
can be used directly.



5 Ensuring terminating propagation

Little attention has so far been given to termination properties of constraint
solvers. This may again be due to the fact that most applications and bench-
marks, and therefore most solvers, were so far focused on and limited to quite
small domains. In a sense, all (sensible) propagations always terminate in the
face of restricted domains, since either a fix-point, or an explicit or implicit
domain-boundary is typically reached very quickly. But with the advent of 64-
bit architectures and larger machine-size integers that become available in most
solvers, “termination” in this sense can no longer be observed, leading to ef-
fectively non-terminating behaviour even for very simple queries that do not
involve huge numbers. Fig. 3 shows three such examples. Line 2 shows that even
enumeration predicates, which should ideally be complete, do not necessarily
terminate in this sense. Line 3 shows a query that is clearly declaratively false,
but this cannot be established if the first goal does not terminate.

1 ?− X #> abs(X).
 

2 ?− X #==> Y #> abs(Y), indomain(X).

3 ?− X #> abs(X), 0 #= 1.

Fig. 3. Effectively non-terminating queries with other solvers on 64-bit platforms

Universally terminating propagation is of theoretical interest in termination
analysis of constraint logic programs (see for example [13]), and also of practical
importance: Simple yet non-terminating queries are counter-intuitive to users,
and – as shown above – may prevent a solver from detecting unsatisfiability,
making it in effect weaker. These effects become especially prominent when ar-
bitrarily large domains can occur.

We ensure terminating propagation by allowing the left and right boundaries,
as well as the distance between the smallest and largest number occurring in a
domain representation to be changed at most once after a constraint is posted,
unless the domain is already finite. That this suffices to guarantee terminating
propagation follows from how a non-terminating propagation chain can occur:
Either the lower limit of some domain increases, or the upper limit of some
domain decreases, or said distance of some domain increases without bound.

6 A domain-specific language for reification

Domain-specific languages (DSLs) are languages tailored to a specific application
domain. DSLs are typically devised with the goal of increased expressiveness
and ease of use compared to general-purpose programming languages in their
domains of application ([16]). Examples of DSLs include lex and yacc ([17]) for
lexical analysis and parsing, regular expressions for pattern matching, HTML



for document mark-up, VHDL for electronic hardware descriptions and many
other well-known instances. DSLs are also known as “little languages” ([14]),
where “little” primarily refers to the typically limited intended or main practical
application scope of the language. For example, PostScript is a “little language”
for page descriptions.

In the context of CLP(FD) systems, DSLs were so far mainly used for the
description and generation of constraint propagation code in practice. In this
chapter, we contribute to these uses of DSLs by presenting a DSL that allows us
to concisely express constraint reification with desirable declarative properties.

Reification means reflecting the truth values of (typically arithmetic) con-
straint relations into Boolean 0/1-variables. When implementing constraint reifi-
cation, it is tempting to proceed as follows: For concreteness, consider reified
equality (#=/2) of two CLP(FD) expressions E1 and E2. We could introduce
two temporary variables, T1 and T2, and post the constraints T1 #= E1 and T2

#= E2, thus using the constraint solver itself to decompose the (possibly com-
pound) expressions E1 and E2, and reducing reified equality of two expressions
to equality of two finite domain variables (or integers), which is easier to imple-
ment. Unfortunately, this strategy yields wrong results in general. Consider for
example the constraint (#<==>/2 denotes Boolean equivalence):

(X/0 #= Y/0) #<==> B

It is clear that the relation X/0 #= Y/0 cannot hold, since a divisor can never
be 0. A valid (declaratively equivalent) answer to the above constraint is thus
(note that X and Y must be constrained to integers for the relation to hold):

B = 0, X in inf..sup, Y in inf..sup

However, if we decompose the equality X/0 #= Y/0 into two auxiliary con-
straints T1 #= X/0 and T2 #= Y/0 and post them, then (with strong enough
propagation of division) both auxiliary constraints fail, and thus the whole query
(incorrectly) fails. While devising a DSL for reification, we found one commercial
Prolog system and one freely available system that indeed incorrectly failed in
this case. After we reported the issue, the problem was immediately fixed.

To reflect the intended relational semantics, it is thus necessary to imple-
ment definedness correctly when reifying constraints. See also [23], where our
constraint system (in contrast to others that were tested) correctly handles all
reification test cases, which we attribute in part to the DSL presented in this
chapter. Once any subexpression of a relation becomes undefined, the relation
cannot hold and its associated truth value must be 0. Undefinedness can occur
when Y = 0 in the expressions X/Y , X mod Y , and X rem Y . Parsing an arith-
metic expression that occurs as an argument of a constraint that is being reified
is thus at least a ternary relation, involving the expression itself, its arithmetic
result, and its Boolean definedness.

There is a fourth desirable component in addition to those just mentioned:
It is useful to keep track of auxiliary variables that are introduced when decom-
posing subexpressions of a constraint that is being reified. The reason for this



is that the truth value of a reified constraint may turn out to be irrelevant, for
instance the implication 0 #==> C holds for both possible truth values of the
constraint C, thus auxiliary variables that were introduced to hold the results
of subexpressions while parsing C can be eliminated. However, we need to be
careful: A constraint propagator may alias user-specified variables with auxiliary
variables. For example, in abs(X) #= T, X #>= 0, a constraint system may de-
duce X = T. Thus, if T was previously introduced as an auxiliary variable, and X
was user-specified, X must still retain its status as a constrained variable.

These considerations motivate the following DSL for parsing arithmetic ex-
pressions in reified constraints, which we believe can be useful in other constraint
systems as well: A parsing rule is of the form H → Bs. A head H is either a
term g(G), meaning that the Prolog goal G is true, or a term m(P ), where P
is a symbolic pattern and means that the expression E that is to be parsed
can be decomposed as stated, recursively using the parsing rules themselves for
subterms of E that are subsumed by variables in P . The body Bs of a parsing
rule is a list of body elements, which are described in Table 1. The predicate
parse reified/4, shown in Figure 4, contains our full declarative specification
for parsing arithmetic expressions in reified constraints, relating an arithmetic
expression E to its result R, Boolean definedness D, and auxiliary variables
according to the given parsing rules, which are applied in the order specified,
committing to the first rule whose head matches. This specification is translated
to Prolog code at compile time and used in other predicates.

g(G) Call the Prolog goal G.
d(D) D is 1 if and only if all subexpressions of E are defined.
p(P) Add the constraint propagator P to the constraint store.
a(A) A is an auxiliary variable that was introduced while pars-

ing the given compound expression E.
a(X,A) A is an auxiliary variable, unless A == X.
a(X,Y,A) A is an auxiliary variable, unless A == X or A == Y.

skeleton(Y,D,G) A “skeleton” propagator is posted. When Y cannot
become 0 any more, it calls the Prolog goal G and
binds D = 1. When Y is 0, it binds D = 0. When D = 1
(i.e., the constraint must hold), it posts Y #\= 0.

Table 1. Valid body elements for a parsing rule

Figure 4 declaratively expresses the intended semantics of reification in a
very concise way that is also quite easy to read and reason about. The imple-
mentations of individual propagators like pplus/3 and pabs/2 are beyond the
scope of the DSL introduced in this chapter, and for example indexicals can be
used to describe their semantics.

The deletion of auxiliary variables and constraints when they are no longer
necessary is useful when introducing constraint programming to beginners (since
shorter answers of the system are easier to grasp), and often also for efficiency



1 parse_reified(E, R, D,
2     [g(cyclic_term(E)) => [g(domain_error(clpfd_expression, E))],
3      g(var(E))         => [g((constrain_to_integer(E), R=E, D=1))],
4      g(integer(E))     => [g((R=E, D=1))],
5      m(−X)             => [d(D), p(ptimes(−1,X,R)), a(R)],
6      m(abs(X))         => [g(R#>=0), d(D), p(pabs(X, R)), a(X,R)],
7      m(X+Y)            => [d(D), p(pplus(X,Y,R)), a(X,Y,R)],
8      m(X−Y)            => [d(D), p(pplus(R,Y,X)), a(X,Y,R)],
9      m(X*Y)            => [d(D), p(ptimes(X,Y,R)), a(X,Y,R)],
10      m(X^Y)            => [d(D), p(pexp(X,Y,R)), a(X,Y,R)],
11      m(min(X,Y))       => [d(D), p(pgeq(X, R)), p(pgeq(Y, R)),
12                            p(pmin(X,Y,R)), a(X,Y,R)],
13      m(max(X,Y))       => [d(D), p(pgeq(R, X)), p(pgeq(R, Y)),
14                            p(pmax(X,Y,R)), a(X,Y,R)],
15      m(X/Y)            => [skeleton(Y,D,X/Y #= R)],
16      m(X mod Y)        => [skeleton(Y,D,X mod Y #= R)],
17      m(X rem Y)        => [skeleton(Y,D,X rem Y #= R)],
18      g(true)           => [g(domain_error(clpfd_expression, E))]]).

Fig. 4. Parsing arithmetic expressions in reified constraints with our DSL

reasons (since irrelevant constraints need no longer be considered). As an exam-
ple, consider the query and its result:

?- X #= 3 #\/ Y #= 4 #<==> B, Y = 4.

Y = 4,

B = 1,

X in inf..sup.

Other constraint systems, such as SICStus, still retain and show an additional
arithmetic constraint on the variable X in the case above although it is no longer
semantically relevant. Removal of irrelevant constraints can also significantly im-
prove performance on some benchmarks. As an example of a benchmark that
uses reification extensively, we took a solution to the so-called “Nonogram”-
puzzle that was generously posted to comp.lang.prolog by Bart Demoen on
Jan. 22nd 2009. By dynamically removing constraints that are no longer seman-
tically relevant, both run-time and inference count decrease by more than 30%
in this case.

To the best of our knowledge, our constraint system is the first one to de-
scribe the full declarative semantics of reification in such brevity. While indexi-
cals can be (and are) used to describe reification of individual atomic constraints,
they cannot express when auxiliary constraints and variables that were intro-
duced when decomposing nested expressions are no longer needed, in contrast
to the DSL we propose in this chapter.

7 Extensions via custom propagators

Our constraint solvers does not yet provide a custom language to add user-
defined constraints as other systems do. Instead, users can add new propaga-
tors directly in Prolog by following a few simple conventions that are explained
in the library’s documentation. Some users have already implemented custom



propagators for specialized (for example: geometric) constraints in this way with
satisfactory results.

8 Performance evaluation

Neng-Fa Zhou, the author of B-Prolog, has kindly integrated our constraint
solver in his benchmarks, available from http://www.probp.com/performance.htm.
The results show that our solver is on average two orders of magnitude slower on
these benchmarks than the fastest system (B-Prolog itself), and about 30 times
slower than the constraint solver of SICStus Prolog.

In part, this may certainly be attributed to the fact that SWI-Prolog itself
(i.e., the system without the finite domain constraint solver) is already more
than 4 times slower than B-Prolog (and more than 3 times than SICStus) on
average on benchmarks that are deemed to be in some sense representative of a
Prolog system’s performance, and which are also available on the website. Our
library is written in Prolog and is thus heavily influenced by the speed of the
underlying Prolog system itself. We found that the same benchmarks are already
faster with YAP by more than a factor of 2 on average.

On the other hand, if large integers are needed, our solver is the only option
of all tested systems and can not be compared to any others at all in this case.

While the comparatively slow speed of our constraint solver will certainly
rule out its usage in many industrial settings, it is already being used at several
universities in France, Germany, Italy, Austria and other countries for teaching
and research purposes and has so far shown more than acceptable performance
for these use cases.

9 Conclusion and future work

We have presented a new finite domain constraint solver, freely available as
library(clpfd) in SWI-Prolog and YAP. The library supports constraint solv-
ing over arbitrarily large integers, always terminating propagation, and uses a
new DSL to concisely express constraint reification.

Future work includes correctness considerations and performance improve-
ments for individual propagators. To this end, we may partially replace the
current Prolog implementation of propagators by a more declarative description
of constraints, such as indexicals ([2],[4]) or a language with similar desirable
properties.
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